Mastering Zcash

Maxime Desalle

2026-01-12

Figure 1: Leonard Bernstein’s “Ode to Freedom”
concert on Christmas day in 1989 celebrating the
fall of the Berlin Wall. The orchestra consisted of
members representing the two German States and
the four occupying powers of post-war Berlin. The
concert was broadcast live to an estimated audience
of 100 million people in more than twenty countries.
The victory of freedom, democracy, and capitalism,
over oppression, totalitarianism, and communism —
pictured.

With deep gratitude to Giulia Mouland for her feed-
back and editorial review, and to Arjun Khemani for
his support.

Contributions to this article are more than welcome
on GitHub through pull requests.

1. Introduction

Unless you're using cash, the information about ev-
ery purchase that you make is tracked and stored
indefinitely. It doesn’t matter what it is, or how sen-
sitive it is. The infrastructure that powers commerce,
both offline and online, has effectively become an
inescapable surveillance apparatus.

When it was first released, there were hopes that
Bitcoin could fix this, but unfortunately, it hasn’t.
In fact, contrary to many people’s understanding,
Bitcoin is incredibly transparent, as every transac-
tion ever made is permanently stored and visible to
everyone. Sure, wallets are pseudonymous, but in or-
der to receive BTC you need to provide your address,
thus providing your entire transaction history and
balance to the sender. On top of that, services like
Arkham have made it trivial, for even the general
public, to track and identify wallets.

This is why authorities condone Bitcoin, for to state
actors, transparent chains are better than the digital
currencies that they themselves control (often called
Central Bank Digital Currencies or CBDCs) in many
ways. Since there is no resistance from the population
to using Bitcoin, and no oversight on how chain data
is used by authorities, it offers perfect visibility for
state actors to track everything, with full impunity.

In some ways, Bitcoin is actually worse than the
banking system it sought to replace. At least bank
records are private from the general public; Bitcoin
isn’t.

It’s for this reason that Zcash takes a different ap-
proach: offering default privacy, rather than default
transparency. This means that when you make a
shielded Zcash transaction, the sender, the recipient,
and the transaction amount are all encrypted. The
network verifies the transaction is valid, verifying
that you have the funds and aren’t spending more
ZEC than you own, but isn’t privy to any information
about the transaction itself.

Note ZEC is the symbol or ticker for Zcash,
like what BTC is for Bitcoin.

Initially, when you think about it, this sounds impos-
sible. How can you prove that something is true with-
out revealing the thing that you’re proving? The an-
swer is zero-knowledge proofs, specifically a construc-
tion called zk-SNARKs. The coverage of zk-SNARKSs
in this article will be kept light and accessible to
the general reader, as it requires a substantial back-
ground in algebra and commitment schemes—beyond

https://github.com/maxdesalle/website/blob/main/content/posts/mastering-zcash.md
https://intel.arkm.com/

this article’s scope.

We will also cover Zcash’s origins in academic cryp-
tography, the philosophy that shaped it, and the
protocol as it exists today.

Some parts of this comprehensive study of Zcash
will be more technical. Though I have tried to make
things as clear and accessible as possible for every-
one, if you have trouble with certain concepts, I
recommend asking an LLM for clarification or simply
skipping it and revisiting it later. If that doesn’t
work, don’t hesitate to reach out with any questions.

Figure 2: David Chaum, cryptography pioneer.

2. Origins

2.1 David Chaum and the Birth of Digital
Cash

The idea of private digital money is far from new, in
fact, it dates back to 1982. David Chaum, who was
then a PhD candidate in computer science, published
a paper titled “Blind Signatures for Untraceable Pay-
ments.”

The core insight of this paper was simple and elegant:
a bank could sign a digital token without seeing its
content, just as you could sign the outside of a sealed
envelope. Then, when the token was spent, the bank
could verify its validity through its own signature,
but wouldn’t be able to link the spending to the
withdrawal.

Later, in 1989, David Chaum founded DigiCash, a
company built to commercialize this idea. The prod-
uct was called ecash and it enabled users to withdraw
digital tokens from their bank accounts and spend
them at merchants without leaving a trail connecting
the buyer to the purchase. Several banks piloted
the technology, including Deutsche Bank and Credit
Suisse.

Unfortunately, DigiCash didn’t succeed, the timing

was wrong. Recall that this was created before
widespread internet commerce, and before people
understood the importance of online privacy. The
company filed for bankruptcy in 1998, but with ecash,
Chaum had proven that private digital money was
doable.

2.2 The Cypherpunks

Soon after, a different kind of movement started tak-
ing shape. In 1992, a group of cryptographers, hack-
ers, and libertarians started meeting in the San Fran-
cisco Bay Area and communicating via an electronic
mailing list. They called themselves the cypherpunks.

The cypherpunks were not academics writing papers,
they were ideologues writing code. Their founding
premise was that in the digital age, privacy would not
be granted by governments or corporations, instead,
it would have to be built, deployed, and defended by
individuals using cryptographic tools. In 1993, group
member Eric Hughes crystallized this concept in A
Cypherpunk’s Manifesto:

“Privacy is necessary for an open society in the elec-
tronic age... We cannot expect governments, cor-
porations, or other large, faceless organizations to
grant us privacy out of their beneficence... We must
defend our own privacy if we expect to have any. ..
Cypherpunks write code.”

The mailing list became a crucible for the ideas that
would shape the next three decades of cryptographic
development. Members included Julian Assange (be-
fore WikiLeaks), Hal Finney (who would later receive
the first Bitcoin transaction), Nick Szabo (who pro-
posed bit gold, a conceptual precursor to Bitcoin),
and Wei Dai (whose b-money proposal was cited by
Satoshi Nakamoto). In 1997, another member, Adam
Back, invented Hashcash, the Proof of Work (PoW)
system later adopted by Bitcoin.

The cypherpunks didn’t build a successful cryptocur-
rency, or did they? The creation of Bitcoin is at-
tributed to the pseudonymous Satoshi Nakamoto,
rumoured to have been a developer or a group of
developers tied to the cypherpunks, and who has not
been active in over a decade. In any case, what we
know for sure, is that the cypherpunks built the cul-
ture, the tools, and the intellectual framework that
has made private currency possible.

Note Shortly after this article was pub-
lished, Zooko Wilcox, co-founder of Zcash,
reached out noting the following: - He was
on the Cypherpunk mailing list! Mean-
ing the cypherpunks did create a success-

https://signal.me/#eu/TST_2FkJznjly3Xkn2NnsNRDw32eoOTHwO0L9REt2N1A2fOQ_vdKEYb-C-KsvEW6
https://link.springer.com/chapter/10.1007/978-1-4757-0602-4_18
https://link.springer.com/chapter/10.1007/978-1-4757-0602-4_18
https://en.wikipedia.org/wiki/DigiCash
https://en.wikipedia.org/wiki/Ecash
https://en.wikipedia.org/wiki/Cypherpunk
https://en.wikipedia.org/wiki/Eric_Hughes_%28cypherpunk%29
https://www.activism.net/cypherpunk/manifesto.html
https://www.activism.net/cypherpunk/manifesto.html
https://en.wikipedia.org/wiki/Julian_Assange
https://en.wikipedia.org/wiki/WikiLeaks
https://en.wikipedia.org/wiki/Hal_Finney_(computer_scientist)
https://en.wikipedia.org/wiki/Nick_Szabo
https://nakamotoinstitute.org/library/bit-gold/
https://en.wikipedia.org/wiki/Wei_Dai
https://nakamotoinstitute.org/library/b-money/
https://en.wikipedia.org/wiki/Adam_Back
https://en.wikipedia.org/wiki/Adam_Back
https://en.wikipedia.org/wiki/Hashcash

ful cryptocurrency. Mea culpa for that
omission. - Zooko became friends there
with the founders, including Tim May who
founded the crypto-anarachist movement,
FEric Hughes who wrote A Cypherpunk’s
Manifesto as previously mentioned, Bram
Cohen who created the BitTorrent protocol
and with whom he worked on a startup
focused on chains of secure hashes, and
John Gilmore who co-founded the Elec-
tronic Frontier Foundation. - The cypher-
punk mailing list was instrumental in his de-
velopment, with John Gilmore, for example,
becoming a friend, mentor, and inspiration.

2.3 Bitcoin: The Wrong Tradeoff

On October 31, 2008, Satoshi Nakamoto posted a
paper to a cryptography mailing list titled “Bitcoin:
A Peer-to-Peer Electronic Cash System.” The paper
described a solution to a problem that had plagued
digital currency designers for decades: how do you
prevent double-spending without relying on a central
authority?

Satoshi’s proposed answer was the blockchain: a
public ledger maintained by a decentralized network
of miners, secured by PoW; it was brilliant, and it
worked! Bitcoin launched in January of 2009, and for
the first time, people could transfer value over the
internet without banks, intermediaries, or permission.

Note We will cover what miners and Proof
of Work (PoW) are and how they work in
the context of Zcash later in this article.

However, there was one glaring problem, as men-
tioned above, Bitcoin isn’t private. The blockchain
is entirely public by design: every transaction, ev-
ery address, and every balance are visible to anyone
who’s interested. Satoshi acknowledged this problem
in the paper, suggesting that users could preserve
some of their privacy by using new addresses for
each transaction, but this was weak mitigation, as
addresses can be clustered, transaction graphs can
be analyzed and real-world identities can be linked
through exchanges, merchants, and metadata.

Nakamoto also later acknowledged that a privacy-
preserving form of Bitcoin would enable a cleaner
implementation of the protocol, but at the time, he
couldn’t envision how to bring it about with zero-
knowledge proofs.

Problematically, the privacy problem remained over-
looked for years. Early Bitcoin users assumed
pseudonymity was close enough to anonymity, but

they were wrong. By the early 2010s, researchers
demonstrated that blockchain analysis could de-
anonymize users with high accuracy. Companies
like Chainalysis, founded in 2014, turned this into a
business by selling blockchain forensics to law enforce-
ment agencies, exchanges, and even governments.

Bitcoin had solved the double-spend problem, but it
had made the privacy problem worse.

2.4 Zerocoin: The Bolt-On Attempt

In 2013, Matthew Green, a cryptographer at Johns
Hopkins University, and two graduate students, Ian
Miers and Christina Garman, published “Zerocoin,”
a paper proposing a solution to Bitcoin’s problem.

Note Fun fact shared by Zooko Wilcox
after the publication of this article: Ian
Miers and Christina Garman later became
founding scientists at the Zcash Company
(see section 2.6), with Christina Garman
later joining the Board of Directors as well.

Their idea was to add a privacy layer on top of
Bitcoin, such that users could convert their bitcoins
into zerocoins, anonymous tokens with no transaction
history. Later, when you wanted to spend it, you
could convert it back to Bitcoin. The conversion
process relied on cryptographic techniques known as
zero-knowledge proofs, which let you prove that you
owned a valid zerocoin without revealing its origin.

Zerocoin worked in theory, but it had problems. First,
the proofs were large, two orders of magnitude larger
than the few hundred bytes required for a normal
Bitcoin transaction. Second, the cryptography was
also limited: you could prove ownership, but you
couldn’t hide transaction amounts. Third, and most
critically, it required Bitcoin to adopt it as a proto-
col change, but Bitcoin’s conservative development
culture made that unlikely.

The Bitcoin community debated Zerocoin and ulti-
mately decided to pass on it. The proposal never
made it into the protocol.

2.5 Zerocash: The Rebuild

In 2014, a new paper was published. The author list
had expanded to include Eli Ben-Sasson and Alessan-
dro Chiesa, cryptographers who had been working
on a new generation of zero-knowledge proofs, plus
Eran Tromer and Madars Virza.

The paper was titled “Zerocash: Decentralized Anony-
mous Payments from Bitcoin.” Despite what its title

https://en.wikipedia.org/wiki/Timothy_C._May
https://en.wikipedia.org/wiki/Bram_Cohen
https://en.wikipedia.org/wiki/Bram_Cohen
https://en.wikipedia.org/wiki/John_Gilmore_(activist)
https://en.wikipedia.org/wiki/Electronic_Frontier_Foundation
https://en.wikipedia.org/wiki/Electronic_Frontier_Foundation
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcointalk.org/index.php?topic=770.msg8637#msg8637
https://en.wikipedia.org/wiki/Chainalysis
https://en.wikipedia.org/wiki/Matthew_D._Green
https://www.cs.umd.edu/~imiers/
https://www.cs.umd.edu/~imiers/
https://www.cs.purdue.edu/homes/clg/
https://en.wikipedia.org/wiki/Zerocoin_protocol
https://ieeexplore.ieee.org/document/6956581
https://ieeexplore.ieee.org/document/6956581

may lead you to think, it wasn’t simply a Bitcoin
extension, it was a complete redesign.

The key innovation was the use of zk-SNARKS, which
stands for Zero-Knowledge Succinct Non-Interactive
Arguments of Knowledge. These were zero-knowledge
proofs that were small (a few hundred bytes), fast to
verify (milliseconds), and expressive enough to prove
complex statements about hidden data. With zk-
SNARKS you can prove not just that you own a valid
coin, but prove that an entire transaction is valid.
This isn’t trivial, it means that the system verifies
that the transaction amounts are correct, there is
no double-spending, etc., all without revealing the
sender, recipient, or amount.

However, there was a catch: zk-SNARKSs required
a trusted setup. Someone had to generate a set of
public parameters that the system would use forever,
but, if that person kept the secret values used to gen-
erate the parameters, it’s so-called tozic waste, they
could undetectably create counterfeit coins. Though
this was of serious concern, the researchers believed
it could be prevented with careful ceremony design.

2.6 The Genesis Block

Zooko Wilcox had been in the privacy and cryptog-
raphy space for decades. He had worked at DigiCash
in the 1990s and been involved with decentralized
storage projects with strong privacy properties like
Tahoe-LAFS. So, when the Zerocash paper was re-
leased, it was an immediate fit.

In 2016, Wilcox founded the Zcash Company, later
renamed Flectric Coin Company, and assembled a
team to turn Zerocash into a production cryptocur-
rency. The academic authors mentioned above joined
as advisors and collaborators on the project.

The trusted setup problem highlighted above required
a creative solution. The team designed an elaborate,
multi-party computation ceremony: six participants,
all in different locations around the world, would
contribute randomness to generate the public pa-
rameters, and as long as at least one participant
destroyed their secret input, the toxic waste would
be unrecoverable. The ceremony took place in late
2016, with participants including Peter Todd, a Bit-
coin Core developer, and journalists who documented
the process. Extensive work went into making sure
that the ceremony wasn’t compromised, as outlined
here.

On October 28, 2016, the Zcash genesis block was
mined. For the first time, a production cryptocur-
rency offered genuine, cryptographic privacy. Thirty-

four years after David Chaum’s first paper, the dream
of untraceable digital money was running on a live
network.

Figure 3: Hyperinflation in the Weimar Republic.
Banknotes had lost so much value that they were
used as wallpaper.

3. What is Zcash?
3.1 A Bitcoin Primer

Tip If you already understand how Bitcoin
works, feel free to skip ahead, this section is
for readers unfamiliar with Bitcoin’s inner
workings.

Bitcoin is essentially a payment system with no cen-
tral operator. There is no bank, no company, and no
single server that can be pointed to. Its decentralized
mechanism operates through thousands of computers
around the world that maintain identical copies of a
shared ledger, called the blockchain, and follow a set
of rules to keep it in sync.

The blockchain is an append-only data structure, and
it’s literally a chain of blocks, so you can add new

https://en.wikipedia.org/wiki/Zooko_Wilcox-O%27Hearn
https://www.tahoe-lafs.org/trac/tahoe-lafs
https://en.wikipedia.org/wiki/Peter_Todd_%28programmer%29
https://spectrum.ieee.org/the-crazy-security-behind-the-birth-of-zcash
https://www.youtube.com/watch?v=O8QA6Nvg8RI
https://www.youtube.com/watch?v=O8QA6Nvg8RI

entries (blocks), but you can never modify or delete
old ones. Each new block consists of transactions
made on the network at the time the block was
created. Additionally, each block references the one
preceding it, leading to the formation of a chain. If
you wanted to change a transaction from the past,
you’d have to rewrite every successive block, which
becomes computational impossibility once enough
time has passed. We will see why that is the case
later.

Keys and Ownership Bitcoin uses public-key
cryptography for wallets. When you “create a wallet,”
what you're really doing is generating a key pair: a
private key (a large random number, kept secret) and
a corresponding public key (derived mathematically
from the private key). A Bitcoin address is derived
from a public key through hashing and encoding.

Example Here’s an example of what these
look like in practice (abbreviated using ...):

o Private key: 1E99423A4ED27608A15. ..
< EBE9F3A1C2BAD5F6A7BSCIDO

e Public key: 03F028892BAD7EDS7D2F. . .3
< ABABCEETFS8CIDOA1B2C3DAESF607182

¢ Bitcoin address: 1
<> BoatSLRHtKNngkdXEeobR76b53LETtpyT

The private key lets you sign messages, while the
public key lets anyone verify that a signature came
from the corresponding private key without revealing
the private key itself. This cryptography is what
retains the private key’s privacy, as you can sign a
message authorizing a transfer using your private key,
and the network can verify your signature using your
public key, without ever seeing your private key.

An important conclusion here is that this means
wallets don’t “hold” BTC in any meaningful sense.
There’s no file on your computer containing coins.
Rather, the blockchain holds the record of which
addresses control which outputs, and your wallet is
just a signing tool, it stores your private keys and
uses them to authorize transactions. If you lose
your private keys, you lose access to your funds; not
because the coins disappeared, but because you can
no longer prove your ownership.

Transactions and UTXOs Transactions are how
Bitcoin value moves. When you send BTC, you're
publishing a signed message that effectively says: “I
authorize the transfer of these coins to this address,”
but what exactly are these coins?

Bitcoin doesn’t track balances, there aren’t database

entries somewhere saying “Address X has 3.5 BTC.
Instead, Bitcoin uses Unspent Transaction Outputs,
often abbreviated as UTXOs. Every transaction
consumes existing outputs and then creates new ones.
The outputs you control but haven’t yet spent are
your UTXOs. This means that your “balance” is just
the sum of all of your unspent outputs. There’s no
running tally of coins, just a collection of discrete
chunks you control.

Example Here’s a quick example: Imagine
that you have a $20 bill and you want to
buy a $12 item. Obviously, you can’t tear
the bill in half, so you hand over the $20
and receive $8 in change.

UTXOs work the same way. If you own a
5 BTC output and want to send someone
3 BTC, you need to consume the entire 5
BTC output and create two new ones from
it: 3 BTC for the recipient and 2 BTC that
return to you as change. Your original 5
BTC output is now ‘spent’ and can never
be used again.

As a result, a Bitcoin transaction is a data structure
containing some metadata as well as: 1. Inputs:
References to UTXOs you’re spending, plus signa-
tures proving you control them 2. Outputs: New
UTXOs being created, each locked to a recipient’s
public key

Nodes validate that the inputs exist, haven’t been
spent yet, and have valid signatures. If everything
checks out, the transaction is relayed across the net-
work and waits to be included in a miner’s block.

Example Here’s what a transaction looks
like in practice (hashes and addresses are
abbreviated using ...):

{
"txid": "c1b4e693...cbdc5821e3",
"inputs": [
{
"prev_txid": "7bleabe...98a14f3f",
"output_index": O,
"signature": "304402204e4...1
<~ a8768d1d09",
"pubkey": "0479be66...ffb10d4b8"
}
1,
"outputs": [
{
"amount": 3.0,
"script": "OP_DUP OP_HASH160 89...ba
<> OP_EQUALVERIFY OP_CHECKSIG"
},
{
"amount": 1.99,

"script": "OP_DUP OP_HASH160 12...78
<> OP_EQUALVERIFY OP_CHECKSIG"
}
]
}

Each input points to a previous transac-
tion’s output by referencing its transaction
ID and index, and each output specifies an
amount. The signature proves you control
the private key. The 0.01 BTC difference
between the input of 5 BTC and outputs of
3BTC + 1.99 BTC, is the transaction fee,
claimed by the miner.

Mining and Proof of Work (PoW) Transac-
tions don’t confirm themselves. They sit in a waiting
area in a node called the mempool (memory pool)
until a miner includes them in a block. Mining is the
process by which new blocks get added to the chain,
and it’s designed to be expensive. That’s a feature,
not a bug, as we will see in a minute.

The problem solved by mining is: in a decentralized
network with no central authority, who decides which
transactions are valid? Who decides their ordering?
If two conflicting transactions appear, say, someone
tries to spend the same coins twice, who resolves this
conflict?

Bitcoin’s solution is: in order to create a valid block,
a miner must find a number, called a nonce, such
that when the block header (containing the previous
block’s hash, a timestamp, etc.) is combined with
this nonce and hashed, the resulting hash is below
a certain target value. Since cryptographic hashes
are effectively random, there’s no way to find a valid
nonce except by guessing, so miners guess billions of
times per second.

Example For example, think of a block
as a page of fixed information with one
adjustable number on it (the nonce). Let’s
assume we start counting the nonce at o.

A computer turns the entire page into a
single output number called a hash. A hash
can be something like 6, or 03asb20, ulti-
mately it’s just a number (yes, 03a5b20 is
a number, because it equals 3,824,416 in
decimal). Remember that the nonce is the
only adjustable number on the page, chang-
ing only the nonce produces a completely
different hash (number) each time.

The network requires the hash to be below
a fixed threshold value, and if it isn’t, the

miner changes the nonce and tries again.
Finally, the nonce is accepted when the
hash meets the threshold requirement.

For example, imagine a case where the
threshold value is 5. The miner has their
page of information and starts with a nonce
of 0. If the computer returns a e, which is
above 5, the miner tries again, now 1 as a
nonce. If this time the computer returns a
4, which is below 5, then 1 is accepted as a
nonce!

The difficulty adjusts every 2,016 blocks (about every
two weeks), maintaining an average block time of ten
minutes. If blocks are coming too fast, the target
decreases, making the puzzle harder, and if blocks are
coming too slow, the target increases. The difficulty
adjustment is why Bitcoin’s block rate stays stable
even as total mining power fluctuates.

Example Here’s what a block looks like:

{
"header": {
"version": 536870912,
"prev_block_hash": "0000000...
<> deOebc842",
"merkle_root": "8b30cbbal...1
> e0d5f8a2c1",
"timestamp": 1701432000,
"target": "0000004f2c0...0000000",
"nonce": 2834917243
},
"transactions": [
{
"txid": "3alb9cT7e...7e8f9alblc",
"inputs": [{ "coinbase": "03a5b20
< ...T06f6f6c" }1,
"outputs": [{ "amount": 6.25, "
<> script": "OP_HASH160
f1c3...4c6a8 OP_EQUAL" }]
},
{ "txid": "clbde...5821e3" },
{ "txid": "7d5e8...b5c6d7e" }
]
}

The header is what gets hashed. Miners
increment the nonce repeatedly until sHA256
< (SHA256(header)) < target, meaning until
applying the SHA256 hash function twice
on the header returns a hash below the
target value. The first transaction is always
the “coinbase” transaction, which creates
new coins and pays the miner.

Once a miner finds a valid nonce, they broadcast
the block and other nodes verify it, checking that
the hash meets the target, that all transactions are
valid, and that the miner didn’t create more coins

than allowed. If valid, nodes append the block to
their chain and begin working on the next one. The
miner earns a block reward in the form of newly
minted bitcoin, plus the transaction fees from the
transactions included in the block.

So, how does this system prevent rewriting the past?
Because each block’s hash is part of the next block,
meaning that changing a single transaction changes
the block’s hash and immediately breaks every block
that comes after it.

Example Imagine that you have two suc-
cessive blocks, A and B. A’s hash is 5 and
B’s hash is 6. If you change a transaction
in A, now A’s hash has changed, and re-
quires B’s hash to change as well. B’s hash
takes into account A’s hash given that B
comes after A and A’s hash is in B. So, B’s
hash will no longer be 6 if a transaction is
changed in A.

In order to make the chain valid again, an attacker
would have to redo the Proof of Work (the process
of finding a nonce below a certain target value etc.)
for not only that block, but for every subsequent
block as well. Meanwhile, honest miners are mining
and extending the “real” chain with new blocks. Ad-
ditionally, Bitcoin follows the chain with the most
cumulative Proof of Work, making it strongly in-
hibitive for attackers.

Therefore, a successful attack would require an at-
tacker to have 51% of the mining power in order to
eventually catch up with and become the ‘real’ chain.
Mining power can also be referred to as hash power,
as miners effectively just hash information countless
times every second of every day.

The Transparency Tradeoff Importantly, for
this system to function without a central authority,
everyone must be able to verify everything. Every
node checks every transaction against the full his-
tory of the chain, every UTXO is tracked, and every
signature is validated.

This comes at the cost of privacy, as every trans-
action and address balance is public. The entire
flow of funds, from the 2009 genesis block to the
most recently mined block, is visible to anyone who
downloads the blockchain.

So, Bitcoin solved the problem of trustless digital
money, but it didn’t solve the problem of trustless
private digital money. That’s where Zcash comes in.

3.2 Bitcoin, But Private

Zcash is effectively like Bitcoin, but with the addition
of encryption. In fact, many refer to it as encrypted
Bitcoin, even though it’s a completely different cryp-
tocurrency.

The economics of Zcash are nearly identical to Bit-
coin’s, so if you understand Bitcoin’s monetary policy,
you understand Zcash’s as well. Zcash has a hard cap
of 21 million ZEC, just like Bitcoin has a 21 million
BTC hard cap. New coins enter circulation through
mining rewards, which halve approximately every
four years, as with Bitcoin.

The consensus mechanism is also Proof of Work,
though Zcash uses Equihash rather than Bitcoin’s
SHA256-based system for mining. Something inter-
esting about Equihash is that it was built with the
explicit aim of resisting the specialized ASICs that
dominate Bitcoin mining, therefore keeping mining
accessible to people with consumer GPUs. The choice
reflects Zcash’s early emphasis on decentralization,
though it no longer works as Equihash ASICs now
exist.

Note ASIC stands for Application-Specific
Integrated Circuit, you can think of them
as computers specifically designed to mine
cryptocurrencies. There exist ASICs spe-
cialized in SHA256 mining, Equihash min-
ing, etc.

ASICs hash information (blocks of trans-
actions) all day long in hopes of finding a
hash below the network’s target value.

Under the hood, Zcash uses the same UTXO trans-
action model as Bitcoin.

However, Zcash differs from Bitcoin in what you can
do with the UTXOs. Bitcoin has one pool of funds:
the public chain, whereas Zcash has several, split into
the transparent pool and the shielded pools, but both
pools use ZEC as currency, and you can move funds
between them. The transparent pool works exactly
like Bitcoin: addresses start with t, transactions are
fully visible, and anyone can trace the flow of funds.

The shielded pools are completely different and are
unique to Zcash. There are three pools , Sprout,
Sapling, and Orchard, with Orchard being the newest
and most advanced. Sprout and Sapling are now
practically unused, since they date back to previous
network upgrades and rely on trusted setups, which
Orchard doesn’t; we will cover this further later on
in the article. Shielded addresses start with z, and

transactions reveal nothing about the sender, the
recipient, or the amount.

Note Henceforth, we will refer to Zcash
pools as the transparent pool and the
shielded pool, as though there are several
shielded pools, in practice they are consid-
ered as a unified whole and Orchard one
primarily used today.

The transparent pool exists for compatibility and
optionality. Some users want auditability, some ap-
plications even require it, and exchanges often use
transparent addresses for regulatory compliance. In
this case, transparency is a feature, not a bug, and
Zcash’s reliance on encryption for privacy in the
shielded pool is unaffected by the usage of the trans-
parent pools.

We should think of the transparent pool and the
shielded pool as two entirely independent systems
that do not affect each other. People often mistakenly
criticize Zcash’s transparency feature as somehow
decreasing its privacy, but that is false. The Zcash
anonymity set is mathematically independent from
how much ZEC sits in transparent addresses. So,
even if 99% of ZEC were transparent, the privacy of
the shielded 1% would only be determined by the
shielded pool itself.

3.3 The Fundamental Problem

In Bitcoin, validating a transaction is straightforward.
You check that the inputs exist and haven’t been
spent before, that the signatures are valid, and that
the outputs don’t exceed the inputs. Every piece of
information needed to verify these conditions is right
there on the blockchain, visible to everyone.

Such transparency is what makes Bitcoin trustless.
You don’t need to trust anyone because you can verify
everything yourself. If you wanted to, you could even
run a node for maximal trustlessness. However, this
is also what makes Bitcoin a surveillance tool, as the
very data that enables verification is the same data
that enables tracking.

Zcash wants both: trustless verification and privacy,
but these seem to contradict each other. How can
the network verify that a transaction is valid if it
can’t see the transaction?

Think about what validation actually requires:

1. The inputs exist, as you can’t spend coins that
don’t exist.

2. The inputs haven’t been spent before, so that
there’s no double-spending.

3. The authorization to spend, since you control
the private key.

4. The math works out, and outputs don’t exceed
inputs.

In Bitcoin, nodes and miners check these four criteria
by looking at the data. In Zcash, the sender, recipient,
and amount are encrypted, and the data isn’t visible.
How then can anyone check these criteria?

The answer is that Zcash doesn’t ask nodes and min-
ers to check the data. Instead, the sender provides
a zk-SNARK, a cryptographic proof, that demon-
strates that the transaction is valid without revealing
any of the underlying information. Miners and nodes
don’t learn what the inputs are, who the recipient
is, or how much is being transferred, they only learn
one thing: the proof is valid, and therefore the trans-
action is valid.

It sounds insane, we can verify a financial transaction
is valid, without seeing it!

The following sections explain why this is possible,
including how Zcash represents value and tracks what
is spent, as well as how zero-knowledge proofs tie
everything together.

3.4 Shielded Notes

As mentioned above, Bitcoin uses UTXOs. Zcash’s
shielded pool uses something conceptually similar
called notes; you can think of notes as encrypted
UTXOs.

So what is a note? A note is an encrypted object
representing a specific amount of ZEC. It’s a discrete
chunk of value, just like UTXOs, but unlike UTXOs,
its contents are hidden. When you receive shielded
ZEC, a note is created. When you spend the shielded
Zec, that note is consumed and new notes are created
for the recipient and your change if applicable, exactly
as with UTXOs.

Example This is what an Orchard note
looks like after decryption:

{

"addr": "ulpg2aaph7jp8rpf6...

> sz7nt28qjmxgmwxa",

"y": 150000000,

"rho": "0x9f8e7d6cbb4da. ..

— £8e7d6c5b4a39281706f5e4d3c2blal",
psi": "Ox1a2b3c4d5e6£f70...

— c4d5e6£708192a3b4cb5d6e7£809",
rcm": "O0x7a3b4cbd6e7b. ..

— d8e9f0alb3d4e5f6a7b8c9d0el1f2a3b"

n

"

In this example, the value field v field
shows 1.5 ZEC (150,000,000 zatoshis). The
other fields, rho, psi and rem will be covered
later, for now, just understand that they
are what makes the cryptography backing
Zcash notes possible.

Notes are never modified, there is no updating of
a balance. Rather, they’re created, they exist, and
they're destroyed when spent. If you have 10 ZEC
and spend 3 ZEC, the original 10 ZEC note is con-
sumed entirely, and two new notes are created: 3
ZEC given to the recipient and 7 ZEC returned to
you, just like UTXOs.

The critical difference between Zcash’s notes and
Bitcoin’s UTXOs is their visibility. A Bitcoin UTXO
is public: everyone can see its value, when it gets
spent, etc. A Zcash note is encrypted: only the owner,
and anyone they share their viewing key with can see
its contents. The blockchain stores a cryptographic
commitment to the note, it does not store the note
itself.

Example The blockchain never sees the
decrypted note. In Orchard, each ‘action’
bundles together a spend and an output.
Here’s what’s actually recorded:

{
"cv": "0x9a8b7c6d5...8
« d7e6f5a4b3c2d1e0f9a8b",
"nullifier": "Ox2c3d4ebf6a7b...
« d2e3f48e9f0alb2c3d",
"rk": "Ox5e6f7a8b...5
— abb7c8d9e0f1a2b3c4db5ebf",
"cmx": "Oxla2b3c4d5e6f7...
<> d3e4f5a6b7c8d9e0f1a2b",
"ephemeralKey": "0x4db5e6f7a8b9...4
— f5a6b7c8d9e0f1a2b3c4dbe",
"encCiphertext": "Ox8f7e6d5c4b3...
> a29180f7e6d5c",
"outCiphertext": "Ox3c4dbe6f7a8...
> b9c0dle2f3a4bbc"

As you can see, it’s all encrypted, we will
go over the specifics of each field later.

You may be thinking, if notes are hidden, how does
the network know they exist? Or how does it know
when they’ve been spent? Here’s where commitments
and nullifiers come in.

3.5 Commitments and Nullifiers

Zcash’s shielded pool faces two problems that Bitcoin
solves trivially through transparency:

1. Proving notes exist: When someone sends

you shielded ZEC, how does the network know
the note is real?

2. Preventing double-spending: When you
spend a note, how does the network know you
haven’t spent it before?

The solution for Zcash is a combination of two cryp-
tographic mechanisms: commitments and nullifiers.

Commitments A commitment is a value com-
puted by hashing the note’s fields together. Here’s
what it looks like In Orchard:

cmx = Hash(addr, v, rho, psi, rcm) = Ox1la2b3c4d...9
< cabb7c8d9e0f1a2b

‘Hash’ denotes the hashing function used. We take
the fields of the shielded note, feed them to the hash
function, and it returns a hash (in this case 0x1a2b3c4d
<+ ...9cabb7c8d9e0f1a2b).

There are two properties that make this useful:

1. One-way: given the returned hash, ox1a2b3c4d
<+ ...9cabb7c8d9e0f1a2b, you cannot recover the
fields addr, v, rho, psi, or rem, and the content of
the note is hidden.

2. Collision-resistant: you cannot find two dif-
ferent notes that produce the same commitment,
each note maps to exactly one commitment.

Each time that a note is created, its commitment is
added to the commitment tree — a Merkle tree —
containing every note commitment ever created on
the network.

Info A Merkle tree is a data structure that
lets you prove that an item is in a large set
without revealing the item or downloading
the entire set.

Here’s how it works. Start with a list of
values (in our case, note commitments): cmo

cml cm2 cm3
Pair them up and hash each pair together:

e HO = Hash(cmO, cml)
e H1 = Hash(cm2, cm3)

Now you have two hashes. Pair and hash
again:

root = Hash(HO, H1)

So far, we have taken pairs of items from
the original set and combined each pair us-
ing a hash function. We then group the
resulting hashes into pairs and hash them
again, repeating this process layer by layer

until we reach a single final hash. This final
value is called the root hash, or Merkle root.

This root hash effectively summarizes the
entire set:

/0 \ /N

cm0 cml cm2 cm3

The key property of Merkle trees is that if
you change any leaf (commitment), meaning
the values cmo, cmi, etc., every single hash
above it changes too, all the way back to
the root. The root acts as the fingerprint
of the entire tree, if you have the same root,
then you must have the same tree.

Additionally, Merkle proofs provide an effi-
cient way to check for an item in the tree
without having to check the whole tree.

For example, to prove that cml is in the
tree doesn’t require revealing all of the com-
mitments. To do so, just provide a Merkle
path, that is, the sibling hashes along the
way to the root. For cm1, the Merkle path
is [cmo0, H1].

Here’s how a verifier could check that: 1.
Take the first element in [cmo, H1], meaning
cm0, and hash it with cmi1, the item we want
to check, this gives us HO: Hash(cm0, cml) =
<+ Ho 2. Hash the output of the first step
(o) with the following item in [cmo, H1l,
meaning Hi. This gives us the root hash:

Hash(HO, H1) = root.

If the result matches the known root, then
we can conclude that cmi is in the tree, im-
portantly, the verifier never sees cm2 or cm3,
it’s not necessary for the verification.

The commitment tree contains every shielded note
commitment ever created, equalling millions of leaves
(commitments). So, when you spend a note, you
prove (inside the zk-SNARK) that you know a com-
mitment and the valid Merkle path to the current
root, without revealing which commitment is yours.

The commitment tree is stored by nodes, as part of
the chain state they maintain. Each block introduces
new note commitments which nodes append to their
local copy of the tree, updating the root accordingly..

10

The current root, known as the anchor, is what trans-
actions reference when proving membership.

Nullifiers Commitments may solve the existence
problem, but they also create a new one: how do you
prevent spending the same note twice?

In Bitcoin, this is trivial, because when you spend a
UTXO, you directly reference its transaction iden-
tification and output index, such that everyone can
see the UTXO has been spent. If you try to spend it
again, nodes will reject the transactions because the
UTXO has been marked as consumed.

The same is not possible for Zcash. If spending a
note required pointing to its commitment, it would
reveal which commitment you’re spending and link
that note to all future transactions, thus breaching
privacy.

In Zcash, the solution to prevent spending the same
note twice is nullifiers. Nullifiers are values derived
from a note, and can only be computed by the note’s
owner.

Example Let’s say that the commitment
tree has 1 million notes, and one of these
notes is yours, specifically ‘commitment o
< x1a2b...’

If spending the note required you to say
“I'm spending 0x1a2b...” then:

Everyone knows that ox1a2b. .. is yours, and
it’s no longer just one of a million anony-
mous commitments. It’s tagged as belong-
ing to whoever made this transaction, and
though they don’t know what’s in that com-
mitment, it’s still problematic that they
know it’s yours.

Senders can now track you, as whoever cre-
ated that note by sending you the ZEC
knows the commitment they created. So,
when you spend and point to it, they are
able to observe that the payment has been
spent, and learn when you moved your
funds.

Over time, the spending may become link-
able. An observer might be able to cor-
relate transactions based on spending pat-
terns, timing, and destination, such that
your commitments get clustered together as
“probably the same person.”

Nullifiers resolve these issues. If you publish
the nullifier 0x2c3d. .., which corresponds to

the commitment oxta2b..., it’s impossible
to compute the mapping of commitments to
nullifiers without knowing your private key.
The commitment remains anonymous in the
Merkle tree, your spends cannot be linked,
and the sender can’t tell if their payment
was spent.

Here’s an example of a nullifier In Orchard:

nullifier = Hash(nk, rho, psi) = 0x2c3d4e5f6a7b...
— d2e3f48e9f0alb2c3d

nk is the nullifier deriving key, a secret key only you
possess. rho and psi are values from the note itself,
as seen previously. No one else can compute this
nullifier because no one else has your nk. Hash, as
in previous examples, is the hashing function being
used (we will cover this later).

Anytime that you spend a note, you also publish its
nullifier. The network maintains a nullifier set, that
is, a collection of every nullifier ever published. So, if
a nullifier is already in the set, the transaction gets
rejected, thus preventing double-spending.

Example Here’s how the nullifier set grows

over time:
e Block 1000000: nullifier set = { }
e Block 1000001: nullifier set = { 0
<5 x2c3d...3d }
o Block 1000002: nullifier set = { 0
< x2c3d...3d, 0x8f7a...2b }
e Block 1000003: nullifier set = { 0

< x2c3d...3d, 0x8f7a...2b, Oxledc...9

< a }

Each spend adds exactly one nullifier. The
set cannot shrink, it only ever grows.

At the risk of being repetitive, let us cover once
more why unlinkability is the critical property. The
nullifier reveals nothing about which commitment it
corresponds to. An observer sees a nullifier appear
and knows that some note was spent, but can’t tell
which one. The commitment tree could contain mil-
lions of notes and the nullifier could correspond to
any of them.

Putting it all together Given that commitments
are never deleted, as the commitment tree is append-
only and grows indefinitely, commitments remain in
the tree even after a note is spent.

This is precisely what makes Zcash’s anonymity set
so strong. Spending requires proving “I know one
of the N million commitments in this tree” without

11

revealing which one. The spent note’s commitment is
mixed among the others, so that even if an observer
sees a nullifier appear they could not narrow down
which of the millions of commitments it corresponds
to.

Your privacy set includes every shielded note ever
created on the network.

To summarize, every shielded transaction involves:

1. Creating notes, which adds new note commit-
ments to the commitment tree.

2. Spending notes, which publishes and adds a
nullifier to the nullifier set.

In order to construct a transaction, you must provide
a zk-SNARK that proves:

¢ You know a note with a commitment in the tree,
via a valid Merkle path.

e You know the secret key needed to compute that
note’s nullifier.

e The nullifier you’re publishing corresponds to
that note.

e« The amounts balance of the entire transaction;
inputs equal outputs plus fee.

The network verifies the proof, checks whether or not
the nullifier is in the set, and accepts the transaction.
Importantly, it never learns which commitment was
spent, who sent funds to whom, or how much was
transferred.

3.6 Keys and Addresses

Bitcoin has a simple key model: one private key,
one public key, and one or more addresses. Zcash’s
shielded system is more complex, as different opera-
tions require different levels of access. Zcash leverages
a hierarchy of keys to address this complexity.

The Spending Key The spending key (sk) is your
master secret, it’s a very long and random number
of 256 bits. Whoever has this can spend your funds,
as everything else is derived from the spending key.

The Full Viewing Key The full viewing key (fvk
<), derived from the spending key, lets you see
everything about your wallet’s activity: incoming
payments, outgoing payments, amounts, and memo
fields, but it cannot handle spending.

The full viewing key is useful for cases where you want
to grant someone audit access without giving them
control. Through the viewing key an accountant
could verify your transaction history, a business could

let compliance review its books, or a tax authority
could confirm reported income; all without risking
that the auditor walks away with the funds.

Incoming and Outgoing Viewing Keys The
full viewing key can also be split into its constituent
elements:

Incoming viewing key (ivk), which lets you detect
and decrypt notes sent to you, but not notes that
you've sent to others. Outgoing viewing key (ovk),
which lets you decrypt the outgoing ciphertexts, so
that you can see what you’ve sent and to whom.

This granularity exists because users may want to
share only limited information. For example, if you
want to provide a service with your incoming viewing
key so the service can notify you of received pay-
ments, without revealing any information about your
spending patterns.

The Nullifier Deriving Key The nullifier deriv-
ing key (nk), also derived from the spending key, is
used to compute nullifiers when spending. This is re-
quired in order to mark notes as spent, which is why
viewing keys alone can’t authorize transactions—they
don’t have access to nk.

Addresses At the bottom of the hierarchy are the
addresses: what you give to people so they can pay
you. In Orchard, addresses are derived from the full
viewing key using a diversifier, which is just a small
piece of random data.

The diversifier enables diversified addresses, meaning
you can generate billions of unlinkable addresses from
a single wallet. Though each address is completely
different, they all funnel to the same set of keys.
Additionally, you can give a unique address to every
person or service you interact with.

Example Say you receive payments from
an employer, a client, and an exchange. You
give each a different diversified address:

o Employer pays to: ulemployer8jp8rpf6
<> ...Qjmxgmwxa

e Client pays to: uilclientaph7jp8rpf...
<> sz7nt28qj

o Exchange pays to: ulexchng2aaph7jps
<> ...gmwxasz7n

The three addresses belong to you and your
wallet receives each sender’s incoming pay-
ments, but the employer, client, and ex-
change cannot deduce that they’re paying
the same user by comparing their addresses.

The Key Hierarchy Here’s the hierarchy:

spending key (sk)
-!—---> full viewing key (fvk)
I i——-> incoming viewing key (ivk)
l———> outgoing viewing key (ovk)
|

|
|
|
|
| +---> addresses (via diversifiers)
|
+

---> nullifier deriving key (nk)

As you move down the hierarchy, each level reveals
less information. The spending key can do everything,
the full viewing key sees everything, but can’t spend,
and the incoming viewing key only sees incoming
funds. Lastly, addresses reveal nothing, they’re just
destinations.

Figure 4: Eli Ben-Sasson, co-founder of Zcash and
now leading StarkWare.

4. Transaction Lifecycle

This chapter will cover exactly what happens when
you send shielded ZEC, from the moment you hit
‘send’ to the moment the recipient sees their balance
update. To exemplify this, we’ll follow every stage
of a single transaction, examining what your wallet
computes, what the network sees, and what ends up
on the blockchain.

4.1 The Setup

Alice wants to send 5 ZEC to Bob. She opens her
wallet, enters Bob’s shielded address, specifies the
amount, and confirms the send. What happens next
involves each of the mechanisms we’ve covered thus
far: notes, commitments, nullifiers, keys, Merkle
proofs, and zk-SNARKSs.

Alice’s wallet holds two unspent notes:

e Note A: 3 ZEC
« Note B: 4 ZEC

She’ll spend both (7 ZEC total) to send Bob 5 ZEC,
pay a 0.001 ZEC fee, and receive 1.999 ZEC in change.

4.2 Note Selection and Retrieval

Remember, Alice’s wallet doesn’t actually store ZEC,
it stores the information needed to spend notes:
the decrypted note data and the keys that control
them. When Alice synced her wallet, it scanned the
blockchain, attempted to decrypt every shielded out-
put using her incoming viewing key, and stored the
ones that succeeded.

Here’s an example of note A:

{
"addr": "ulalice...",
"y": 300000000, // 3 ZEC in zatoshis
"rho": "O0x7a8b9c...",
"psi": "Ox1d2e3f...",
"rcm": "Ox4abb6c...",
"position": 847291, // Position in
< commitment tree
"cmx": "0x9f8e7d..." // The commitment
}

The position field is crucial because it tells the wallet
where in the commitment tree this note is situated,
information necessary to construct the Merkle proof.

4.3 Fetching Merkle Paths

In order to spend a note, Alice must prove that its
commitment exists in the tree, without revealing
which commitment it is. This requires proving a
Merkle path from the commitment to the root.

13

Alice’s wallet queries a full node for the Merkle path
at each note’s position. For Note A, at position
847,291 in a tree with depth 32, the path consists of
32 sibling hashes:

merkle_path_A = [

"Ox1la2b3c...", // Sibling at level 0
"0x4d5e6f...", // Sibling at level 1
R // 30 more siblings
"0x7g8h9i..." // Sibling at level 31

]

Anyone with access to this path can verify that cmx_a
< is in the tree by hashing back to the root. but,
inside the zk-SNARK, Alice can prove this without
revealing cmx_A or the path itself.

The wallet also records the anchor—the Merkle root
at the time of path retrieval. The transaction will
reference this anchor and nodes can use it to verify
that it’s a recent, valid root.

4.4 Computing Nullifiers

Alice has her notes and their Merkle paths, now she
needs to mark them as spent.

Recall from section 3.5 that nullifiers solve the funda-
mental problem of preventing double-spending with-
out revealing the note being spent? With Bitcoin,
you have to point to a UTXO directly and everyone
can see it’s now consumed, but with Zcash, pointing
to a commitment would destroy privacy by linking
you to that specific note.

Alice computes a nullifier for each note she’s spending,
the nullifier is derived from the note’s data and her
secret nullifier deriving key (nk):

nullifier_A = Hash(nk, rho_A, psi_A) = 0x2c3d4ebf
— ...
nullifier_B = Hash(nk, rho_B, psi_B) = 0x8f7a9b2c

< ...

The rho and psi values are unique to each note, mean-
ing they were set when the note was created. The
nk is derived from Alice’s spending key, but only she
possesses it.

The construction has two critical properties:

1. It’s deterministic: Each note produces exactly
one nullifier. If Alice tried to spend Note A twice,
she’d have to publish 0x2c3d4est. .. twice. The
network maintains a nullifier set of every nullifier
ever published, so the second attempt would be
rejected because that nullifier already exists.

. It’s unlinkable: No one else can compute the
nullifier for Alice’s notes because no one else has

her nk, and crucially, no one can work backwards
from a nullifier to determine its corresponding
commitment. So, when 0x2c3d4e5f. .. appears on
the blockchain, observers will see that some note
was spent, but won’t be able to tell which of
the millions of commitments in the tree it came
from.

The nullifiers will be included in Alice’s transaction
and published on-chain, but are the only public trace
of her spending. Just two opaque 32-byte values
that reveal nothing about the notes themselves, their
amounts, or who controlled them.

Note The nullifier set only grows. Unlike
the commitment tree (which is append-only
but tracks all notes ever created), the nul-
lifier set tracks spent notes. A note’s com-
mitment stays in the tree forever, even after
it’s spent. The nullifier’s presence in the
nullifier set is what marks it as consumed.

4.5 Creating Output Notes

Alice is spending 7 ZEC (3 ZEC + 4 ZEC) and needs
to create two new notes: 5 ZEC for Bob and 1.999
ZEC for her change; there’s a 0.001 ZEC transaction
fee.

Each note requires novel randomness, so Alice’s wal-
let generates the cryptographic components that
make each note unique and spendable only by its
intended recipient.

Generating Note Components For Bob’s 5 ZEC
note:
{
"addr": "uilbob...", // Bob's shielded
< address
"y": 500000000, // 5 ZEC in
< zatoshis
"rho": "Ox3e4fb5a6b...", // Derived
< deterministically
"psi": "O0x7c8d9e0f...", // Random
"rcm": "O0xl1la2b3c4d..." // Random (
< commitment randomness)
}

For Alice’s 1.999 ZEC change note:

{
"addr": "ulalice...", // Alice's own
< address
"y": 199900000, // 1.999 ZEC in
<~ zatoshis
"rho": "O0x5f6a7b8c...",
"psi": "Ox9dOelf2a...",
"rcm": "Ox4ebf6a7b..."
}

14

The rho value in Orchard is derived deterministically
from the transaction, which prevents against certain
types of cryptographic attacks. The psi and rem val-
ues are freshly sampled random numbers. Together,
these values ensure that even if Alice sends Bob 5
ZEC a thousand times, the note’s commitment would
be different every time.

Computing Commitments Once the note com-
ponents are ready, Alice computes the commitment
for each output:

cmx_bob = Hash(addr_bob, 500000000, rho_bob,
< psi_bob, rcm_bob)
= 0x8a9%b0cid...

cmx_alice = Hash(addr_alice, 199900000, rho_alice,
< psi_alice, rcm_alice)
= 0x2d3e4fba...

These commitments are what will be published on-
chain and added to the commitment tree. They
reveal nothing about the notes themselves, they are
opaque 32-byte hashes, but anyone who knows the
underlying values (the recipient, specifically), can
verify that a commitment corresponds to a specific
note.

Encrypting the Notes The commitments go on-
chain, but Bob needs the actual note data in order to
later spend his 5 ZEC. He needs to know the value,
rho, psi, and rcm, as without these, the commitment
is useless as he can’t construct a valid nullifier or
prove ownership.

Alice encrypts each note so that only the intended
recipient can read it:

For Bob: Alice uses Bob’s address (which contains
his public key material) to encrypt the note. The
result is the encCiphertext ciphertext: a blob of en-
crypted data that can only be decrypted using Bob’s
incoming viewing key. When Bob’s wallet scans the
blockchain and successfully decrypts this ciphertext,
he learns he received 5 ZEC and stores all the data
needed to spend it.

For Alice’s records: There’s a second ciphertext
called outCiphertext: this one is encrypted to Alice’s
outgoing viewing key, allowing her wallet to remem-
ber what she sent. Without this, Alice wouldn’t have
a record of where her funds went. It’s encrypted,
rather than being stored in plaintext, so that node
operators and observers can’t read it.

{
"cmx": "0x8a9b0cld...",

"ephemeralKey": "Ox6b7c8d9e...",

"encCiphertext": "0x9f8e7d6cbb4a...[512 bytes
1.0,
"outCiphertext": "Ox3c4d5e6f7a8b...[80 bytes

— 1..."

The ephemeralkey is a one-time public key generated
for this specific encryption, and Bob can use it along-
side his private key in order to decrypt encCiphertext.
This is standard for public-key encryption, but the
twist is that it’s happening inside a system which
never linked Bob’s address to an identity, and where
the ciphertext doesn’t reveal anything to outside
observers.

Note The encryption is not part of what
the zk-SNARK proves. The encryption is a
separate layer that ensures only recipients
can access their funds, whereas the proof
verifies that notes are correctly formed and
that the transaction amounts balance. If
Alice encrypted incorrectly (or maliciously
used the wrong key), the transaction would
still be valid on-chain—but Bob would never
be able to find or spend his note. In prac-
tice, wallets handle this correctly, and the
recipient’s inability to decrypt would be a
wallet bug, not a protocol violation.

At this point, Alice has everything required for the
outputs: two commitments to publish and encrypted
payloads so that each recipient can claim their note.
Now comes the hard part: proving it’s valid without
revealing any of it.

4.6 The Proof

Alice has assembled all of the pieces: the two notes
to spend, their Merkle paths, the nullifiers that will
mark them as consumed, and two fresh output notes
with their commitments and encrypted payloads.
Now, how to convince the network that everything
is valid without revealing the details?

Here’s where zk-SNARK comes in.

What the Proof Demonstrates The proof is
a cryptographic object that demonstrates all of the
following are true:

1. The input notes exist. Alice knows two of
the commitments that are in the commitment
tree. She proves this when outlining the valid
Merkle paths from those commitments to the
anchor (the tree root). The proof doesn’t re-
veal which commitments Alice is referencing,

15

just that they’re in there somewhere among the
millions.

. Alice controls the inputs. Alice knows the
spending keys for both notes, specifically, she
knows the secret values needed to derive the
nullifiers and authorize the spend. Without this,
anyone could try to spend anyone else’s notes.

. The nullifiers are correct. The nullifiers that
she’s publishing actually correspond to the notes
she’s spending. Alice can’t publish arbitrary
nullifiers, they must be derived from real notes
she controls using the proper formula.

. The transaction amounts balance. The sum
of the input values (3 + 4 = 7 ZEC) equals the
sum of the output values (5 + 1.999 = 6.999
ZEC) plus the fee (0.001 ZEC). No ZEC is cre-
ated or destroyed. This is the fundamental con-
servation law of the system.

. The output commitments are well-formed.
The commitments she’s publishing for Bob’s note
and her change note are correctly computed from
valid note data. She can’t publish garbage com-
mitments—they must follow the proper struc-
ture.

The network doesn’t learn which notes were spent,
who the recipient is, or the amount that moved from
one party to another. It only learns that someone
made a valid transaction: real inputs, real outputs,
correct math, and proper authorization. That’s
enough to update the global state, meaning adding
commitments and recording nullifiers, without know-
ing anything about the transaction itself.

What the Proof Actually Is After all of this
complexity, the proof itself is almost anticlimactic:
roughly one to two kilobytes of data - that’s it! It’s
just a small blob of bytes that encodes a mathemati-
cal argument.

Verification is fast, just a few milliseconds on mod-
est hardware. A node receives the proof, runs the
verification algorithm, and returns a binary answer:
valid or invalid. No judgment calls, no heuristics, no
probabilistic guesses; the math either checks out or
it doesn’t.

This asymmetry is zk-SNARKS’ magic. Creating the
proof is computationally expensive, Alice’s wallet
does real work, crunching through elliptic curve oper-
ations and polynomial math. However, verifying the
proof is cheap. The asymmetry makes the system
practical: every node on the network can verify ev-

ery shielded transaction without re-doing the heavy
computation.

The Circuit How does Alice actually produce this
proof? By running her transaction data through
something called a circuit—a formal specification of
exactly what conditions must hold for a valid Orchard
spend.

Think of the circuit as a massive checklist encoded
in mathematical constraints. The step to prove “the
Merkle path must be valid” becomes a series of hash
computations that must produce the right output,
the step “the nullifier must be correctly derived”
becomes constraints on how certain values relate
to each other, finally “the amounts must balance”
becomes an equation that must hold.

Alice’s wallet takes her private inputs (notes, keys,
paths, randomness) and grinds through this circuit
to find values that satisfy every constraint. The
zk-SNARK machinery then compresses this entire
satisfying assignment into a tiny proof that anyone
can check.

Note The circuit is fixed at the protocol
level, and every Orchard transaction uses
the same circuit, as defined in the Zcash
specification. Alice can’t modify the rules,
she can only prove that she followed them.
This is what makes the system trustless:
nodes don’t need to trust Alice, they just
need to verify that her proof passes the
universal circuit agreed to.

Alice’s wallet has now produced a proof: a ~1.5
KB object asserting that a valid transaction exists,
without saying what it is. Now it’s time to package
everything up and send it to the network.

4.7 Assembling the Transaction

Alice has her nullifiers, her output notes, her en-
crypted payloads, and her proof - now she needs
to package everything into a transaction that the
network can process.

The Action Structure Orchard uses a structure
called an action. Each action bundles exactly one
spend and one output together, this is a deliberate
design choice. Earlier Zcash protocols (Sprout and
Sapling), separated spends and outputs, but this
leaked information about transaction structure. If
you saw a transaction with three spends and one
output, you would be learning something. Orchard
eliminates this problem by forcing a 1:1 pairing.

16

Alice is spending two notes and creating two outputs,
so her transaction contains two actions:

e Action 0: Spends Note A (3 ZEC), creates
Bob’s note (5 ZEC)

e Action 1: Spends Note B (4 ZEC), creates
Alice’s change note (1.999 ZEC)

The pairing within each action is arbitrary. Action 0
doesn’t mean Note A “became” Bob’s 5 ZEC. The
values don’t match, and that’s fine. What matters
is the global constraint: total inputs equal total
outputs plus fee. The action structure just ensures
tat observers can’t infer transaction shape.

Note What if Alice wanted to spend two
notes, but only create one output? In order
to do this, she would still need two actions,
so she would have to create a dummy output
in the second action. A dummy is a zero-
value note that exists only to balance the
structure. The same applies in reverse: if
she had one input but needed two outputs,
she would include a dummy spend. Ob-
servers can’t distinguish real actions from
dummies.

What Goes Onchain Here’s what Alice’s trans-
action actually contains:

{
"anchor": "0x7£f8e9d0c...",
"actions": [
{
"cv": "0x9a8b7c6d...",
"nullifier": "Ox2c3d4ebf...",
"rk": "Ox5e6f7a8b...",
"cmx": "0x8a9b0Ocid...",
"ephemeralKey": "Ox6b7c8d9%e...",
"encCiphertext": "0x9f8e7d6c...[580
—> bytes]",
"outCiphertext": "Ox3c4dbe6f...[80
> bytes]"
1,
{
"cv": "Ox1b2c3d4e...",
"nullifier": "0x8f7a9%b2c...",
"rk": "Ox4dbe6f7a...",
"cmx": "O0x2d3e4fba...",
"ephemeralKey": "0x8c9d0elf...",
"encCiphertext": "0x7e8f9alb...[580
— bytes]",
"outCiphertext": "Ox5a6b7c8d...[80
> bytes]"
}
1,
"proof": "Oxla2b3c4d...[~1.5 KB]",
"bindingSig": "Ox4e5f6a7b...[64 bytes]"
}

Let’s break this down:

anchor: The Merkle root that Alice’s proof references.
This commits her transaction to a specific state of
the commitment tree. Nodes will verify this is a
recent, valid root. If Alice tried to use an anchor
from a year ago, the transaction would be rejected.

e cv (value commitment): A cryptographic
commitment to the value being spent or created
in each action. These don’t reveal the actual
amounts. Instead, they’re constructed so that
the sum of all cv values across the transaction
encodes the net flow. If the transaction is bal-
anced (inputs = outputs + fee), the math works
out. If not, verification fails.

o nullifier: The nullifiers for Note A and Note
B. These get added to the nullifier set, marking
those notes as spent forever.

o rk (randomized verification key): This is
used to verify the spend authorization signature.
This proves Alice authorized this specific trans-
action without revealing her actual spending
key.

e cmx: The commitments for Bob’s note and
Alice’s change note. These get added to the
commitment tree.

¢ ephemeralKey + encCiphertext + outCi-
phertext: The encrypted note data, as covered
in section 4.5. These don’t affect consensus, but
without them, recipients couldn’t claim their
funds.

e proof: The zk-SNARK proving everything is
valid. One proof covers the entire transaction
(both actions).

e bindingSig: A signature that ties all the pieces
together. It proves that the cv values across
all actions sum correctly (guaranteeing value
conservation) and that the transaction hasn’t
been tampered with. This is the final check that
the amounts actually balance.

The Fee You'll notice the fee isn’t explicitly stated
anywhere, that’s because it’s implicit. Alice’s input
total is 7 ZEC and her output total is 6.999 ZEC. The
difference, 0.001 ZEC, is the transaction fee, which
is claimed by miners.

The value commitments encode net flow, so when a
miner verifies the binding signature, they’re confirm-
ing that inputs minus outputs equals the claimed fee.
If Alice tried to claim her outputs totaled 7 ZEC,

17

leaving no fee, the binding signature would fail. If
she tried to create extra ZEC out of thin air and
claimed 8 ZEC of outputs from the 7 ZEC of inputs,
the proof itself would be invalid.

The fee is public. Observers can see how much was
paid to process the transaction, but that’s the only
visible value. The input amounts, output amounts,
and transfer of value between parties remain hidden.

4.8 Broadcasting and Mempool

Alice’s wallet has assembled the complete transaction,
now it needs to reach the network.

Sending to the Network The sending process
proceeds as follows. Alice’s wallet connects to one
or more Zcash nodes and broadcasts the transaction.
The message propagates through the peer-to-peer
network, hopping from node to node until it reaches
the miners and the broader network. The sending
process works exactly as in Bitcoin, the transaction
is just data gossiped from nodes to peers.

From Alice’s perspective, this takes one or two sec-
onds. She sees “transaction broadcast” in her wallet
and just waits for the confirmation.

Initial Validation When a node receives Alice’s
transaction, it doesn’t blindly accept it. Before re-
laying it further or adding it to the mempool, the
node runs a series of checks:

1. Proof verification: The node runs the zk-
SNARK verifier on Alice’s proof. This takes
a few milliseconds. If the proof is invalid, the
transaction is rejected immediately. No further
checks needed.

. Anchor check: The node verifies that the an-
chor Alice used (the Merkle root her proof refer-
ences) is valid. Specifically, it must be a recent
root from the commitment tree. Zcash allows
a window of recent anchors to accommodate
network latency. If Alice’s anchor is too old or
doesn’t match any known tree state, the trans-
action is rejected.

. Nullifier check: The node checks both nul-
lifiers against its local nullifier set. If either
0x2c3d4e5f. .. Or 0x8f7ad9b2c... already exists in
the set, Alice is attempting to double-spend.
The transaction is rejected.

. Structural validity: The node confirms the
transaction is well-formed: correct field lengths,

valid encodings, binding signature verifies, and
so on. Malformed transactions are dropped.

If all of the checks pass, the node considers the trans-
action valid. Then, it adds the transaction to its
mempool (memory pool), a holding area for uncon-
firmed transactions, and relays it to other nodes.

Waiting in the Mempool The mempool is pur-
gatory for transactions. Alice’s transaction sits there
alongside hundreds or thousands of others, all wait-
ing for a miner to pick them up and include them in
a block.

Miners select transactions from the mempool based
on fees. Higher fee transactions generally get picked
first. Alice paid 0.001 ZEC, which is typical for Zcash,
and under normal network conditions, this is enough
to get included in the next block or two.

During the waiting period, Alice’s transaction is un-
confirmed. The network has validated it, but it hasn’t
been written into the blockchain yet. Bob’s wallet
might detect the pending transaction - some wal-
lets show incoming unconfirmed transactions - but
he can’t spend those funds until the transaction is
mined.

Note The mempool is not global, nor syn-
chronized, each node maintains its own
mempool. Due to network propagation de-
lays, different nodes might have slightly dif-
ferent sets of pending transactions at any
given moment. This doesn’t matter for con-
sensus, what does matter is which transac-
tions make it into blocks.

The transaction is broadcast. Nodes have validated
it. Now, Alice waits for a miner to do the final work.

4.9 Block Inclusion and Finality

A miner selects Alice’s transaction from their mem-
pool, bundles it with other transactions, and begins
the work of mining a new block.

Mining the Block Zcash uses Proof of Work, just
like Bitcoin. The miner constructs a block header
containing the previous block’s hash, a timestamp,
a Merkle root of the included transactions, and a
nonce. Then, they grind through nonces until finding
one that produces a hash below the target difficulty.

This process is identical to what we covered in the Bit-
coin primer (section 3.1), with one exception: Zcash
uses the Equihash algorithm instead of SHA256. The
security properties are the same - finding a valid block

18

requires significant computational work and verifying
that work is trivial.

When a miner finds a valid nonce, they broadcast
the block and then other nodes verify it: valid proof
of work, valid transactions, correct structure. If
everything checks out, nodes append the block to
their chain and Alice’s transaction becomes part of
the permanent record.

State Updates Once the block is accepted, the
network’s state changes:

¢ The commitment tree grows: Bob’s note
commitment 0x8a9b0cid... and Alice’s change
note commitment 0x2d3e4f5a... are appended to
the commitment tree. Now the tree now contains
two more leaves than before and a new Merkle
root is computed. This root becomes a valid
anchor for future transactions.

¢ The nullifier set expands: Alice’s two nulli-
fiers (0x2c3d4est. .. and 0x8f7a9b2c. . .) are added
to the nullifier set. Those notes are now perma-
nently marked as spent. Any future transaction
attempting to use either nullifier will be rejected.

e The block reward is issued: The miner re-
ceives newly minted ZEC (the block subsidy)
plus the sum of all transaction fees in the block,
including Alice’s 0.001 ZEC.

These state updates are deterministic. Every node
that processes the block arrives at exactly the same
new state. The commitment tree has the same new
root everywhere. The nullifier set contains the same
entries everywhere. This is what makes the network
consistent without central coordination.

Confirmations Alice’s transaction is now con-
firmed, but confirmation doesn’t mean finality.

Like Bitcoin, Zcash uses pure Proof of Work, which
has no cryptographic finality. The chain with the
most cumulative work wins, but nothing prevents a
sufficiently resourced attacker from building a longer
chain that rewrites history. Transactions in orphaned
blocks return to the mempool or become invalid if
they conflict with the attacker’s chain.

The conventional wisdom—that after six confirma-
tions, reversal is “negligible”—is misleading. It
frames security as a statistical property when it’s
actually an adversarial one. This applies to all pure-
PoW chains, Bitcoin included. Against an attacker
with majority hashpower, no confirmation count

provides cryptographic certainty—only economic as-
sumptions about attacker incentives and hashpower
costs.

Note Zcash’s 75-second block time means
confirmations accumulate faster—six con-
firmations take about seven and a half min-
utes versus Bitcoin’s hour. Each block rep-
resents less work, but confirmations com-
pound quickly.

The transaction is mined and the state is updated.
Alice’s old notes are gone forever, replaced by two
new notes in the commitment tree. One belongs to
Bob, and now he needs to find it.

4.10 Recipient Detection

Alice’s transaction is on-chain. Bob’s 5 ZEC exists
as a commitment in the tree, but Bob doesn’t know
that yet. His wallet needs to find the corresponding
note.

Scanning the Blockchain Bob’s wallet periodi-
cally syncs with the network, downloading new blocks
and scanning for incoming payments. The chal-
lenge is that Bob can’t simply search for his address.
Shielded outputs don’t contain addresses in plaintext,
every output resembles random encrypted data.

Bob’s wallet tries to decrypt every shielded output it
encounters, so for each encciphertext of every action
of every block, the wallet attempts decryption using
Bob’s incoming viewing key. Most of these attempts
fail and produce unusable data, but that’s expected
since those outputs belong to someone else.

Finally, when Bob’s wallet hits Alice’s transaction
and tries to decrypt the ciphertext in Action 0, the
decryption succeeds and the valid note data emerges.

Recovering the Note When decryption works,
Bob’s wallet recovers the full note plaintext:

{
"addr": "ulbob...",
"y": 500000000,
"rho": "Ox3e4fba6b...",
"psi": "O0x7c8d9e0f...",
"rcm": "Oxla2b3c4d..."
}

Bob now has everything he needs:

e The value: 5 ZEC (500,000,000 zatoshis). His
wallet updates his balance accordingly.

19

¢ The note components: The rho, psi, and rcm
values that Alice generated. These are essen-
tial. Without them, Bob couldn’t compute the
commitment to verify that it matches what’s on-
chain, or derive the nullifier to spend the note
later.

¢ The position: Bob’s wallet also records where
this commitment sits in the tree. When the block
was processed, the commitment was appended
at a specific leaf index. Bob needs this position
to construct a Merkle path when he eventually
spends.

Verifying the Note Bob’s wallet doesn’t blindly
trust the decrypted data. It recomputes the commit-
ment from the recovered values:

cmx_check = Hash(addr_bob, 500000000, rho, psi, rcm

—)

If cmx_check matches the cmx published onchain in
Alice’s transaction, the note is valid. If they don’t
match, something is incorrect (either corruption or
malicious senders), and the wallet discards the note.

During normal operations, this check always passes.
Alice’s wallet constructed the note correctly, and the
decryption recovered exactly what she encrypted.

A Spendable Note Bob now owns a spendable 5
ZEC note. His wallet stores the note data locally and
keeps it ready for whenever he wants to use it. At
that point, he’ll follow the same process that Alice
did in order to send it to him:

Select the note

Fetch its Merkle path

Compute its nullifier

Create output notes for his recipients
Generate a proof

Broadcast the transaction

CU @ =

6.

The cycle repeats: Bob’s spend will reveal a nullifier,
marking his note as consumed, new commitments
will be added to the tree, and then new recipients
will scan, decrypt, and discover their funds.

Note Scanning is the main performance
bottleneck for shielded wallets, as a wal-
let that’s been offline for months needs to
trial-decrypt millions of outputs to catch
up. It’s for this reason that light clients and
optimized sync protocols matter. Project
Tachyon, mentioned in section 2, aims to
dramatically improve the catch-up process

with oblivious synchronization, letting wal-
lets query servers for relevant data without
revealing what information is being sought.

Alice sent 5 ZEC to Bob. The network verified the
transaction without learning who sent what to whom,
but Bob was still able to detect his payment without
anyone else knowing he received it. The transaction
is complete.

A Jll,l!!%! [
498 —

il
'n
i1
I
1l

T

=

;

e
[
W=

|
\
|
|

N
\)

7‘/
)

:A;[/;':‘F
)/
y

/ » A
/

/u

/
/

== 5

Figure 5: Jeremy Bentham’s Panopticon, 1791. A
prison designed so inmates never know if they’re
being watched. They learn to watch themselves.

5. The Philosophy of Privacy
5.1 Privacy as a Precondition for Progress

Privacy does not mean secrecy, for secrecy aims to
hide something shameful. Privacy is the right to
choose what you reveal and to whom. Privacy is
autonomy over your own information, it’s the foun-
dation of freedom itself.

This distinction matters because critics of privacy
often conflate the two. The refrain of authoritarian
systems proclaims that “if you have nothing to hide,
you have nothing to fear,” and assumes that privacy
is only valuable to those with something to conceal.
However, privacy is valuable to everyone, precisely
because it creates the conditions for everything else
we value: free thought, free speech, free markets, and
progress.

20

The Conditions for Progress Karl Popper
thought that progress was dependent on criticism.
Bold ideas must be proposed, tested, and corrected,
so that errors can be identified and discarded. This
process requires freedom from punishment for propos-
ing bold ideas before they’re tested and which risk
being wrong. The panopticon ensures that dissent is
muted before it can be voiced. Innovation requires
permissions and criticism gets punished - the mecha-
nism of progress breaks down.

David Deutsch extended Popper’s insights, positing
that humans are unique in virtue of being universal
explainers. Our capacity to create knowledge, to
understand the cosmos, and even transform them,
makes us special. Yet, knowledge creation requires
experimentation, and experimentation requires the
freedom to fail privately before succeeding publicly.
Surveillance inhibits the freedom to experiment, for
when every action is observed and recorded, it suffo-
cates creative thinking.

These are not abstract concerns. They’re the reality
of anyone who has self-censored knowing their words
were being surveilled. Anyone who chose not to do-
nate to a controversial or novel cause knowing the
transaction would be visible or traceable. Anyone
who avoided researching a sensitive topic knowing the
query would be logged. Surveillance changes behav-
ior, that’s one of its primary functions. Sometimes,
changing behaviors amounts to constraining ideas,
and thus, to constraining progress.

Money as the Final Monopoly Throughout his-
tory, freedom has depended on the tools we had to
protect it.

The printing press encouraged free speech. Before
Gutenberg, ideas often were chained to scribes and
priests, locked behind institutional authority. The
press broke the monopoly on information.

The internet broke the monopoly of geography. Ideas
could now be shared across borders in an instant.
Coordination became possible without physical prox-
imity. Censorship became harder when information
could route around obstacles.

Gunpowder shattered the monopoly of knights and
kings over violence. A peasant with a musket could
challenge a lord in armor. Power became more dis-
tributed.

Every time, a new tool smashed an old monopoly.
Now, one monopoly remains: money.

Money is the most powerful coordination technology

humans ever built. It’s how we signal value, allocate
resources, and cooperate at scale, but it remains sig-
nificantly restricted. Money is the most surveilled
and the most controlled technology. Every trans-
action can be monitored. Governments can freeze
accounts with a keystroke. Banks can cancel you
overnight. Increasingly, capital controls can prevent
you from withdrawing your own cash.

Arguably, your money is not yours if someone else
can see every transaction you make, decide whether
or not to approve it, and later even decide to reverse
that decision and inhibit access.

Privacy in Markets Free markets require privacy,
this conclusion follows from understanding how mar-
kets work:

Markets aggregate information through prices, mean-
ing that as participants make decisions based on
private knowledge, prices emerge from the sum of
those decisions. The mechanism functions only if
participants are able to make decisions based on
their private information without also revealing it
prematurely. A trader who must broadcast every
position before taking it will be front-run. A busi-
ness that must publish every supplier relationship
will be undercut. A donor who must announce every
contribution will be pressured.

Any leak, even just of small pieces of information,
changes the market because it introduces bias and
distorts decisions. The more surveillance there is
in a system, the more distortion it faces. Perfect
markets require participants who can act freely on
private information, which is made impossible under
conditions of absolute surveillance.

Your net worth should not be a public API. Your
transaction history should not be a queryable
database. Your financial life should not be subject to
the approval of observers. These are not edge cases
or paranoid concerns, they are the baseline require-
ments for markets to function and for individuals to
be free.

5.2 The Transparency Trap

Crypto was supposed to free us from financial surveil-
lance, but It did the opposite.

The cypherpunks who built this movement under-
stood the stakes at hand. They understood that
privacy in the digital age would not be granted by
governments or corporations, but would have to be
built, deployed, and defended with cryptographic
tools. Bitcoin emerged from this tradition, and it

21

did succeed in being the first crack in the dam, proof
that money could exist outside government control.

However, Bitcoin has a major flaw, it’s transparent
by default. Every transaction, every address, and
every balance is visible to anyone interested in looking
for it. The blockchain is a permanent public ledger
of all of the economic activity that has ever come
across it. Satoshi acknowledged this limitation in
his original whitepaper, suggesting that users could
preserve some privacy by generating new addresses
for each transaction. That was a weak mitigation
then, and it’s developed into an absurd one now.

Pseudonymity means that your identity is not directly
tied to your address. Nevertheless, your identity can
leak through observation of your behavior, such as
the times at which you transact, the amounts that
you move, the addresses you interact with, in sum,
the patterns you repeat. With each data point the
set of possible identities for an address narrows, until
finally, with enough constraints, the set collapses to
one.

In the age of Al, pseudonymity is privacy on borrowed
time, it’s just an illusion waiting to be dissolved by
compute.

Commerce Requires Opacity The transparency
problem is not limited to individuals, as commerce
also breaks down without privacy.

Consider what happens when you make a single pay-
ment to a business on a transparent chain. Now, you
can now see their address, and from that address
potentially derive their total revenue, their customer
addresses, their supplier relationships, their payroll,
even their cash flow and runway.

There is a reason that HR departments treat com-
pensation structures as closely guarded secrets, that
businesses do not publish their supplier contracts,
and that financial statements are released quarterly,
in controlled formats, rather than streamed in real-
time to the public. Competitive markets require
informational asymmetry. Businesses must be able
to act on private knowledge without broadcasting it
to competitors.

The same logic applies to individuals. If your spend-
ing patterns reveal your health conditions, your polit-
ical affiliations, your religious practices, and your per-
sonal relationships, then every transaction becomes
a data point in generating a picture of who you are,
what you value, and how you can be influenced or
coerced.

The web needed HTTPS before commerce could func-
tion online. Transmitting credit card numbers in
plaintext was obviously unacceptable due to security
reasons. The payment layer of the internet needs the
same evolution, just as plaintext transactions were a
prototype, production requires encryption.

5.3 Privacy Must Be Absolute

Half-measures do not work because privacy is binary
- you either have it or you do not.

This may sound extreme, but it follows from how
information works. A secret is only a secret until it
leaks, as once it’s leaked, it cannot be unleaked. In a
world of permanent storage, pattern recognition, and
Al-powered analysis, any partial leak grows to be-
come a full leak. The question is not if the remaining
bits of information will be extracted, but when.

The Single-Bit Problem Imagine a privacy sys-
tem that hides 99% of your transaction data but
leaks the remaining 1%. That 1% might seem ac-
ceptable, but information compounds. One leaked
bit constrains possibilities, and two bits constrain it
further. Each additional leak narrows the possibili-
ties of who you could be, what you could be doing,
and why.

Adversaries are patient. They're going to collect par-
tial pieces of information over time, correlate across
data sources, and apply statistical techniques to ex-
tract the signal from the noise. Though a timing
correlation here, an amount pattern there, a network
graph connection elsewhere are not individually suf-
ficient to identify you, they can once they converge.

Remember, this is not a hypothesis, it’s the method-
ology of chain analysis, metadata analysis, and every
modern surveillance system. The assumption that
small leaks will remain small is incorrect; small leaks
accumulate to compose complete pictures.

Any privacy system that leaks must answer the fol-
lowing question: What happens when an adversary
with unlimited time and compute optimizes against
those leaks? If the answer is “they eventually win,’
then the system does not provide privacy, it just
provides delayed exposure.

i

Obfuscation vs Encryption There are two ap-
proaches to hiding information, either you obfuscate
it, making it harder to find among noise, or you
encrypt it, making it mathematically inaccessible
without the key.

22

Obfuscation is hiding a needle in a haystack. It
works until someone builds a better magnet. The
needle is still there, still findable with sufficient effort.
The security is economic, not mathematical. You
are betting that finding the needle costs more than
it is worth. But costs decline over time. Compute
gets cheaper. Algorithms get smarter. Adversaries
get more motivated. What is hidden today may be
trivially exposed tomorrow.

Encryption is destroying the needle and keeping only
a locked description of it. Without the key, the
description is indistinguishable from random noise.
There is no magnet that helps. There is no amount of
computation that extracts meaning from randomness.
Security is mathematical, not economic. It does not
degrade over time. An encrypted message from 2016
is exactly as secure today as it was then, assuming
the cryptography was sound.

This distinction matters enormously for financial
privacy. Obfuscation-based approaches mix your
transaction with others, to hide it among decoys or
add noise to the data. Although these techniques
raise the cost of analysis, they do not make analy-
sis impossible. As analysis techniques improve, the
protection weakens. Privacy that was adequate five
years ago may be broken today, and privacy that
seems adequate today may be broken by the tools of
2030.

Encryption-based approaches hide the transaction
itself, there is no transaction to analyze, only a proof
that a valid transaction occurred. The data is not
simply obscured, it is absent, and therefore immune
to future developments in analysis techniques; you
cannot find patterns in data that do not exist.

Why This Determines Architecture This is
why Zcash encrypts transactions rather than obfus-
cating them. The sender, recipient, and amount are
not hidden among decoys or mixed with noise. In-
stead, they are encrypted. The blockchain stores
commitments and proofs, not obscured data, so what
the network sees is mathematically indistinguishable
from random bytes.

The concise argument is that if you accept that pri-
vacy must be absolute, that partial leaks compound
into total exposure, and that adversary capabilities
only grow over time, then encryption is the only
viable architecture as the permanent solution, and
obfuscation is just a temporary measure.

The choice is not between more privacy and less
privacy. It is between privacy that will hold and

privacy that will eventually fail. There is no middle
ground.

5.4 The Macro Case

So far, the privacy arguments have been philosophical.
That privacy enables progress, transparency equates
to surveillance, and partial privacy fails, remain true
in any era. However, we do not live in just any era,
in the current era, the macro environment makes
privacy not just valuable but urgent.

History Does Not End The stability of modern
western societies may have led people to misjudge
the permanence of stability. Throughout history and
across the world, stability is the exception, not the
rule. Regimes collapse. Currencies fail. Debt cycles
reset. Capital controls appear overnight. These are
not rare events or distant history, these are features of
the modern world happening to someone, somewhere,
right now.

In the past decade alone Cyprus seized bank deposits
during its financial crisis and Greece imposed capital
controls preventing citizens from withdrawing their
own money. Lebanon’s banking system collapsed,
trapping savings behind withdrawal limits that have
lasted years. Argentina cycled through currency
crises with depressing regularity. Nigeria restricted
access to foreign currency. China tightened capital
flight controls.

There’s a consistent pattern of governments reaching
for financial controls when faced with fiscal pressure.
The national economy and central banks allow bank
accounts to be frozen, withdrawals limited, trans-
fers blocked, and assets seized. Thus, the question
becomes which assets are seizable and which are not.

Gold has historically served as a hedge against scenar-
ios of fiscal unpredictability. It’s hard to confiscate
at scale, difficult to track, and holds value across
regime transitions. Unfortunately, gold has terrible
user experience in the modern world, as it must be
physically acquired, verified for authenticity, stored
securely, and transported though it’s high risk. The
friction of its user experience limits its utility as a
practical store of value for most.

Bitcoin was supposed to be digital gold. Arguably, it
is in certain ways, yet its transparency creates a dif-
ferent vulnerability. If every one of your transactions
is visible on a public ledger, the state can simply
identify your holdings, track your movements, and
apply pressure through legal channels. The trans-
parency that makes Bitcoin trustless also makes it

23

targetable.

The Surveillance Ratchet Surveillance capabili-
ties only move in one direction: expansion.

Governments accumulate data, build systems, hire
analysts, and develop analysis techniques. Govern-
ments can share information across agencies and even
across borders. The infrastructure of surveillance,
once built, does not get dismantled, but upgraded.

Al is going to dramatically accelerate these advance-
ments. Pattern matching that once required teams of
analysts can now be automated. Metadata that once
sat in silos can now be correlated at scale. Behavioral
analysis that once took months can now happen in
real time. The cost of surveillance per person drops
toward zero. The only limit is what data exists to
be analyzed.

On transparent blockchains, that data is everything.
Literally every transaction that you have ever made
is permanently preserved, waiting for better analysis
tools. The blockchain does not forget, and neither
do the adversaries mining it for information.

What you do today will be analyzed with the tools of
tomorrow. Transactions that seem anonymous now
may be trivially traceable in five years. Patterns that
seem hidden in noise today may be obvious signals
once the algorithms improve. The decisions that you
make in 2026 must account for the state of privacy
and analysis in 2030.

The Precedent We Must Remember One of
the most effective tools of authoritarian control is
mandatory disclosure. It doesn’t begin with confisca-
tion, but with the collection of information. Register
your religion. Declare your assets. Report your asso-
ciations. Though these requirements are presented as
administrative and bureaucratic, these often precede
something worse.

Once disclosure becomes mandatory, populations can
be segmented, and groups can be identified, analyzed,
and assessed. Do they follow a religion that we
disapprove of? Do they belong to associations that
we find threatening? Do they possess assets that we
might want? The separation and distinction precedes
the persecution, it’s once the data exists that the
targeted actions become possible.

Authoritarian control has occurred within living mem-
ory, and even happened without the scalability advan-
tages that modern technology provides. The Nazis
used paper records and filing cabinets. Today, our

https://en.wikipedia.org/wiki/2012%E2%80%932013_Cypriot_financial_crisis
https://en.wikipedia.org/wiki/Capital_controls_in_Greece
https://en.wikipedia.org/wiki/Capital_controls_in_Greece
https://en.wikipedia.org/wiki/Lebanese_liquidity_crisis
https://en.wikipedia.org/wiki/2018%E2%80%93present_Argentine_monetary_crisis
https://en.wikipedia.org/wiki/2018%E2%80%93present_Argentine_monetary_crisis
https://www.cbn.gov.ng/out/2013/fprd/circular%20to%20all%20banks%20and%20other%20financial%20institutions-us$10,000.pdf
https://www.cbn.gov.ng/out/2013/fprd/circular%20to%20all%20banks%20and%20other%20financial%20institutions-us$10,000.pdf
https://www.reuters.com/markets/asia/china-steps-up-scrutiny-capital-flows-yuan-depreciates-2025-02-27/
https://www.reuters.com/markets/asia/china-steps-up-scrutiny-capital-flows-yuan-depreciates-2025-02-27/

digital tools make population-scale identification and
targeting effortless.

To hold private assets is to refuse these threats, it is
to reject the premise that your financial life should
be legible to power, it is a stance against a philosophy
that has proven catastrophic when implemented.

Al-powered surveillance is ever expanding. The
weaponization of legal systems against disfavored
groups is increasing. Capital controls are becoming
more common as fiscal pressures mount. Confisca-
tion for political reasons is no longer unthinkable in
developed democracies.

The security of your wealth should not depend on
who wins elections. Your savings should not be one
policy change away from seizure. Your financial
privacy should not rely on the continued goodwill of
institutions that have demonstrated their willingness
to bend the rules.

In sum, the macro case for privacy is that bad things
have happened, are happening, and will continue to
happen. The question is whether you’ll be prepared
to face them when they arrive at your door.

5.5 The Fork in History

We’re at a branching point. The infrastructure of
money is being rebuilt. The choices made now will
determine what is possible late, and the branches
diverge sharply.

Surveillance Money One path leads to total fi-
nancial visibility, where every transaction is logged,
every donation is analyzed, and every purchase builds
a profile. This outcome is the trajectory of our cur-
rent system.

Central bank digital currencies are being piloted
across the globe. For example, China’s digital yuan
is already deployed at scale, the European Central
Bank is developing the digital euro, and the Federal
Reserve has studied a digital dollar. Importantly,
these systems are surveillance-enabling, not privacy-
preserving, by design. The objective is increased
visibility: who spent what, where, when, and with
whom.

Programmable money further extends the logic of fis-
cal control, introducing expiration dates on currency
that force spending, restrictions on what categories of
goods can be purchased, social credit systems where
financial access depends on behavior scores, and stim-
ulus payments that can only be used at approved
vendors. None of this requires conspiracy, it only

24

requires the infrastructure to have been built and
the incentives to use it to arise.

Transparent blockchains fulfill the infrastructure com-
ponent by providing surveillance without the over-
head of building CBDCs. Governments do not need
to issue digital currency when citizens voluntarily
record their transactions on public ledgers. The out-
come is the same: a panopticon where economic
activity is legible to anyone with the tools to read it.

The path of total financial visibility ends with money
as a means of control. It’s not an instrument of
voluntary coordination, but a device for social man-
agement. Spend ‘correctly’ and you are left alone,
spend ‘incorrectly’ and you are flagged, restricted,
and frozen. The freedom to transact becomes a priv-
ilege granted to you by Big Brother.

Freedom Money The other leads to money that
cannot be surveilled, censored, or controlled. Trans-
actions are private by default, and account balances
are visible only to their owners, making economic ac-
tivity legible to participants and opaque to observers.

It’s important to note that this path does not result
in anarchy, a state of being without rules. The result
of this path is rules, but rules that are enforced by
mathematics rather than institutions. It’s not possi-
ble to double-spend because cryptography prevents
it. It’s not possible to inflate the supply because
the protocol forbids it. It’s not possible to forge
transactions because you do not have access to the
required keys. The rules are embedded in the system
itself, enforced by nodes instead of government, and
importantly, immune to discretionary override.

In this future, markets function without the distortive
effect of observation. Group coordination remains
possible without the influence of surveillance. Dis-
senting organizations remain possible because finan-
cial support cannot be traced. Innovation remains
possible because experimentation cannot be moni-
tored. Thus, the conditions for progress described in
section 5.1 are preserved.

The Encryption Precedent There’s still reason
to believe that the freedom path is not foreclosed.

In the 1990s, the United States government tried
to ban strong encryption. The NSA and FBI ar-
gued that encrypted communications would support
criminals and terrorists, and pushed for key escrow
systems that would provide the government with
backdoor access. These federal organizations clas-
sified encryption software as munition, making its

https://en.wikipedia.org/wiki/Digital_renminbi
https://en.wikipedia.org/wiki/Digital_euro
https://en.wikipedia.org/wiki/Digital_euro
https://www.federalreserve.gov/cbdc-faqs.htm
https://www.federalreserve.gov/cbdc-faqs.htm

export illegal.

The cypherpunks opposed and defeated these mea-
sures, but encryption spread anyway. Researchers
published algorithms. Developers shipped software.
The internet adopted TLS. Today, encryption is not
merely legal, but mandatory. HTTPS is required
for banking, commerce, and communication. The
government that once tried to ban encryption now
mandates it to protect citizens.

The transition from “encryption is dangerous” to
“encryption is required” took about two decades. It’s
very plausible that private money is going to follow
this arc. Today, financial privacy is treated with
suspicion: regulators view it as a tool for criminals,
and compliance frameworks assume transparency to
be the default. The arguments for communication
privacy, deemed legitimate and important, also ex-
tend to financial privacy: individuals need protection
from surveillance, commerce requires confidentiality,
and the alternative is a world where control surfaces
are everywhere.

Zcash is legal in the United States, it’s even traded
on regulated exchanges. It has operated for nearly a
decade without being banned. This is not an accident.
It reflects the same legal and political logic that
protected encryption: the right to use cryptographic
tools is defensible, and the benefits of privacy extend
far beyond those who would abuse it.

The Choice These paths are mutually exclusive,
you cannot have both surveillance money and free-
dom money. You cannot have both financial privacy
and universal transaction monitoring. The infras-
tructure currently being built will determine which
world we inhabit.

Choosing to shield your transactions is not just a
personal financial decision, it’s a vote for which future
path to choose. Your choices reveal your preferences,
as every transaction in the shielded pool strengthens
the network and every user who adopts private money
makes it more viable. The technology exists, now we
must decide to use it.

Surveillance money leads to a future where economic
freedom is a permission to be granted by the powerful.
Freedom money leads to a world where economic free-
dom is fundamental and guaranteed by mathematics.
Which do you choose?

25

Figure 6: Depositors queue outside Northern Rock,
September 2007. The first British bank run in 150
years.

6. Evolution & Economics
6.1 Protocol Generations

Zcash has upgraded its core cryptography twice since
launching, and with each generation came better
performance, stronger security, and fewer trust as-
sumptions. The protocol of today is substantially
better than the protocol of 2016.

Sprout (2016) The original shielded pool proved
that private cryptocurrency was possible, as, for the
first time, a production network offered cryptographic
privacy backed by zero-knowledge proofs.

Sprout was just a prototype clothed as production.
Creating a shielded transaction required about 40 sec-
onds of computation and several gigabytes of RAM.
Sprout was not usable on phones, and barely usable
on laptops. Most transactions remained transparent
simply because shielding was too costly.

Sprout also required a trusted setup ceremony, where
six participants generated the initial parameters, each
taking elaborate precautions to destroy their secret
contributions. The ceremony worked, but it left an
uncomfortable question: what if someone secretly
kept the toxic waste?

Sapling (2018) Two years later, Sapling replaced
Sprout’s cryptography with something far more effi-
cient. The time required for proof generation dropped
from forty seconds to just a few. Memory require-
ments fell to a few dozen megabytes, and shielded
transactions became practical on mobile devices for
the first time.

Sapling also introduced features that made privacy
more usable. For example, viewing keys let users
share read access to their transaction history with-
out exposing spending authority, and diversified ad-
dresses let a single wallet generate billions of unlink-
able receiving addresses.

Importantly, the trusted setup remained. A new cer-
emony called Powers of Tau involved hundreds of par-
ticipants over several months, followed by a Sapling-
specific phase. The larger ceremony increased con-
fidence, but the trust model was the same: believe
that at least one participant was honest.

Orchard (2022) Orchard replaced the entire sys-
tem of proofs. Built on the Halo 2 proving system,
it didn’t require a trusted setup and there was no
ceremony. Thus, there’s no toxic waste and no trust
assumptions about events that happened years ago.

The performance of Orchard is comparable to Sapling,
but with slightly larger proofs and no setup require-
ments. The cryptography is also structured differ-
ently, using a new curve cycle (Pallas and Vesta)
designed specifically for recursive proofs.

Orchard is the pool that Zcash was always meant to
have. The earlier generations were the best technol-
ogy available at the time; Orchard is what became
possible once the research caught up with the vision.

Today Orchard is now the default for new shielded
transactions. Some wallets, like Zashi, route users to
Orchard automatically and auto-shield transparent
funds before spending.

Sapling remains supported but is being phased out. It
served its purpose as a bridge between the prototype
and the production-ready system, but Orchard is the
final destination.

Sprout has deprecated, though the pool still exists
on-chain, wallets no longer create new Sprout transac-
tions and users with funds in Sprout are encouraged
to migrate.

6.2 Turnstiles

Privacy creates an auditing problem. On a transpar-
ent chain, you can count every coin. The supply is
the sum of all balances and visible to anyone. If a
bug allowed coins to be created from nothing, you
would see the total increase.

Shielded pools hide balances. You cannot simply add
up what everyone holds because you cannot see what

26

anyone holds. So, if counterfeit coins entered the
shielded pool, how would you know?

The answer is turnstiles.

The Mechanism Shielded pools each have their
own turnstile, that is, a running tally of the ZEC that
has entered and exited the pool. When coins move
from the transparent pool into a shielded pool, the
turnstile records the deposit, and when coins move
back out, it records the withdrawal.

The math is simple. If the turnstile shows 1 mil-
lion ZEC have entered a pool and 800,000 ZEC have
exited, then at most 200,000 ZEC remain. If some-
one tries to withdraw 300,000 ZEC, something is
wrong, either the cryptography failed, or someone is
attempting to commit fraud.

Turnstiles do not prevent counterfeiting, instead, they
detect it. More precisely, turnstiles detect any at-
tempt to cash out counterfeit coins. You can forge
ZEC inside a shielded pool (if you somehow break the
complex cryptography), but you cannot spend those
coins in the transparent pool without the discrepancy
being noted.

The Sprout Bug In 2018, a vulnerability was
discovered in the Sprout cryptography. A flaw in
the proof system that could have allowed an attacker
to create coins without detection inside the shielded
pool.

The bug was found by the Zcash team during a se-
curity audit and patched before any exploitation oc-
curred, but the episode demonstrated the importance
of turnstiles.

If an attacker had exploited the bug, they could have
minted arbitrary ZEC within Sprout. but they could
not have extracted those coins silently. The moment
they tried to move forged ZEC into the transparent
pool or a different shielded pool, the turnstile math
would break and auditors would see that more ZEC
exited Sprout than had ever entered.

Turnstiles would successfully limit the blast radius
of any attacks, as even a catastrophic cryptographic
failure would not produce undetectable inflation. The
damage would be bounded by the pool’s capacity, and
any attempt to realize the counterfeit value would
raise alarms.

6.3 Funding Development

Zcash made a controversial choice when it launched:
to pursue protocol-level funding for development.

Rather than relying on donations or corporate spon-
sorship, a portion of every block reward goes directly
to development organizations.

Founders’ Reward (2016-2020) For the first
four years, 20% of all block rewards went to founders,
early investors, employees, and the Zcash Foundation,
through what was called the Founders’ Reward.

It remained a controversial decision despite the fact
that the arrangement was disclosed before launch,
and anyone mining or buying ZEC knew the terms.
On one hand, the critics saw it as a tax on miners and
a windfall for insiders. On the other hand, the sup-
porters saw it as necessary funding for a project that
required years of ongoing cryptographic research.

The Founders’ Reward ended upon the first halving in
November 2020 and every recipient received exactly
what was promised. The founders now no longer
receive protocol rewards.

Dev Fund (2020-2024) Before the Founders’ Re-
ward expired, the community debated what should
come next. The result was the Dev Fund, a continua-
tion of the 20% allocation under a different structure.

The new distribution directed 7% of block rewards
to the Electric Coin Company (the primary develop-
ment team), 5% to the Zcash Foundation (infrastruc-
ture and governance), and 8% to community grants
administered by an independent committee. The
founders and early investors were removed from the
funding stream.

The Dev Fund arrangement ran between the first
halving and second halving in November 2024.

Extended Dev Fund (2024-2025) As the second
halving approached, the community voted on the
allotment again, and decided to extend the Dev Fund
with some modifications.

Development funding continues at 20% of block re-
wards, but now a portion flows to a “lockbox” con-
trolled by future governance mechanisms rather than
existing organizations. The intent is to decentral-
ize funding decisions over time, giving token holders
more direct influence over how development money
is spent.

6.4 Decentralized Governance

No single entity controls Zcash. Development, in-
frastructure, and governance are distributed across

27

independent organizations with different jurisdictions,
funding sources, and mandates.

The Organizations Electric Coin Company
(ECC) is the primary protocol development team.
The ECC team maintains the reference node imple-
mentation, develops the Zashi wallet, and drives the
core research. ECC is a subsidiary of the Bootstrap
Project, a 501(c)(3) nonprofit based in the United
States.

Zcash Foundation handles infrastructure, commu-
nity programs, and grants. The foundation’s team
developed Zebra, an independent node implementa-
tion written in Rust, ensuring the network does not
depend on a single codebase. The Zcash Founda-
tion is a 501(c)(3) public charity, also US-based but
operationally independent from ECC.

Shielded Labs focuses on long-term research and
ecosystem development. Based in Switzerland and
funded by donations rather than protocol rewards, it
provides geographic and structural diversity to the
contributor base.

Tachyon, led by cryptographer Sean Bowe, is building
the infrastructure for Zcash to scale. Bowe was the
architect behind Halo 2 and much of Zcash’s core
cryptography. The Tachyon project aims to enable
global private transactions through innovations in
how wallets sync with the network without leaking
information to servers.

These four organizations collaborate but are not re-
quired to answer to each other. They can disagree
and they sometimes do. The diversity of aims and
perspectives is a feature that prevents capture and
ensures multiple perspectives inform protocol deci-
sions.

The ZIP Process Protocol changes follow the
Zcash Improvement Proposal (ZIP) process, mean-
ing that anyone can propose a change. Proposals
are debated publicly, refined through feedback, and
accepted or rejected based on technical merit and
community consensus.

Major decisions skip the ZIP process and are resolved
through community-wide polling. The Dev Fund
extensions in 2020 and 2024 both involved extensive
public deliberation and sentiment gathering before
implementation. Input was taken from token holders,
miners, and community members.

Figure 7: The Enigma machine, used by Nazi Ger-
many to encrypt military communications during
World War II. Operators changed settings daily, pro-
ducing messages that appeared as random gibberish
to interceptors.

7. Zcash VS ...

Privacy comes from value at rest, not value in motion.

This single principle explains why most privacy solu-
tions fail and why base layer encryption is the only
architecture that works. Once you understand it, the
landscape of privacy technologies becomes clear.

7.1 Tornado Cash and Mixers

Consider what happens when you use a mixer. You
deposit funds, wait for some period, then withdraw
it to a fresh address. The goal is to break the link
between your input and output, but both the deposit
and the withdrawal are visible. An observer sees
when funds enter and funds exit. The mixer tries to
obscure which input corresponds to which output,
but this does not ensure privacy.

Rather, it’s adding privacy to value in motion, which
fails for the fundamental reason that the entry and
exit points leak information.

The deposit reveals the time and amount. The with-
drawal reveals the time and the amount. If these
correlate, privacy is broken. If you deposit 1.5 ETH
and someone withdraws 1.5 ETH an hour later, the

28

connection is obvious. Mixers try to solve this with
fixed denominations and delays, but the leakage of in-
formation remains. Correlations are bound to emerge
given enough data and sophisticated analysis.

AT worsens these risks. Pattern matching that was
once impractical becomes trivial to solve with timing
analysis, amount clustering, and behavioral patterns.
Every mixer is a puzzle waiting for algorithms to
develop ways to solve it.

The only way to truly separate incoming and outgoing
transactions is to separate them on the aspects of
both time and value. The incoming transaction must
not cause the outgoing transaction. The amounts
and the transaction timing must be unrelated.

The private system therefore serves as an actual
store of value. Money goes in, it sits, time passes, life
happens, until eventually, unrelated amounts go out
for unrelated reasons. The deposit and withdrawal
are not two parts of a single operation, they are
independent events separated by months or years of
genuine storage.

You could, in theory, do this with a mixer like Tor-
nado Cash and leave funds in the pool indefinitely,
but this is impractical because you cannot do any-
thing with those funds while they sit there.

Additionally, Tornado has fixed denomination pools,
so you cannot send arbitrary amounts within the
pool, you cannot transfer from one Tornado position
to another, nor can you use it to pay someone or to
interact with any application. To use your funds for
anything at all, you must withdraw to a transpar-
ent Ethereum address, re-exposing yourself to the
surveillance layer.

Zcash is different. Shielded-to-shielded transfers
are native, so you can receive funds, hold them,
spend arbitrary amounts, receive change, and trans-
act again, all without ever touching the transparent
layer. Bridge from the shielded pool to other chains
using Near Intents, paying in shielded ZEC while
the recipient receives whatever asset they want. The
shielded pool is not a waiting room, it’s a fully func-
tional monetary system.

This is the architectural distinction that matters.
Mixers are escape hatches from transparent systems -
you visit them, you wait, you leave. Zcash’s shielded
pool is a destination - you can live there.

7.2 Monero

Monero is the most widely used privacy cryptocur-
rency besides Zcash. It represents a fundamentally

different approach to the information leakage prob-
lem, and in understanding why their approach fails,
we will clarify why Zcash’s approach works.

Monero’s approach is to use ring signatures. When
you spend funds, your transaction includes your real
input plus 15 decoys sampled from the blockchain.
An observer sees 16 possible senders and cannot tell
which one is real.

This sounds robust. Sixteen possibilities per trans-
action. The real spend is hidden among many fakes.
In reality, this just means that the privacy is proba-
bilistic, but not cryptographic.

Law enforcement agencies have successfully traced
Monero transactions. There’s even a documented
case of Japanese police analyzing Monero transac-
tions to identify and arrest eighteen suspected fraud-
sters.

The fundamental issue is the anonymity set. Each
Monero transaction hides among 16 outputs, whereas
each Zcash shielded transaction hides among every
note ever created in the pool. There are millions
of these notes, so the privacy Zcash offers is not
incrementally superior, but categorically superior.

Sixteen is a small number, definitely small enough to
attack probabilistically, especially now that timing
analysis, amount patterns, and behavioral heuristics
can narrow the candidates. Sixteen is small enough
that sufficient compute and data will eventually crack
it.

There is no probabilistic attack that works against
a privacy set of millions of notes. It’s impossible to
narrow the candidates through elimination because
nothing is eliminated. The note you spent remains
indistinguishable from millions of others forever.

Monero’s developers understand this limitation, and
there is active research into replacing ring signatures
with zero-knowledge proofs, effectively, it’s planning
on adopting Zcash’s approach; an implicit acknowl-
edgment that decoy-based privacy has a ceiling.

The distinction is simple: Monero obfuscates, Zcash
encrypts. Obfuscation degrades over time as analysis
techniques improve, encryption does not.

On top of the technical weaknesses, Monero also car-
ries cultural baggage. The community has embraced
an association with illicit use, making its institu-
tional adoption nearly impossible. This is part of
why Monero has been delisted from virtually every
major exchange while Zcash remains available on
Coinbase, Gemini, and others. Privacy technology

29

needs a path to legitimacy, and Monero has made
that path harder for itself than it needed to be.

7.3 Privacy Pools

Privacy Pools present a different approach to privacy
solutions. Rather than hiding among random decoys
or encrypting everything, it lets users prove they
are not associated with known bad actors. You can
withdraw from a pool while demonstrating your funds
did not come from sanctioned addresses or flagged
transactions.

The design is clever, association sets let you define
who you are willing to be grouped with. Thus, you
prove membership in a “clean” set without revealing
which specific deposit is yours. Regulators receive
assurance that funds are not tainted and users receive
some privacy, everyone is happy.

Except, this inverts due process.

The premise of Privacy Pools is that you must prove
your innocence. It’s on you to prove that your funds
are not associated with criminals and to opt into a set
of “good” users and provide cryptographic evidence
that you belong there. The default assumption is
suspicion, and the burden falls on you to clear it.

In functioning legal systems, you do not have to
prove that you are not a criminal - the prosecution
must prove that you are. Privacy Pools normalize the
opposite, that you are guilty until you prove yourself
innocent through the approved association sets.

The implications abound, as your privacy depends on
what others choose to disclose. If members of your
association set start proving exclusion from various
activities to clear their own names, the remaining
members become more suspicious. There is constant
pressure to prove more, disclose more, and further
narrow your set. The system creates chilling effects
by design.

There does not exist “compliant encryption” for mes-
saging. Signal does not ask you to prove that you are
not conversing with terrorists, it accepts that commu-
nication privacy is a right, at the cost of benefiting
criminals.

There is no reason that it should be any different
for finance. The argument that money is special or
that financial privacy uniquely enables harm do not
survive scrutiny. Criminals use cars, phones, and the
internet, yet, we do not require proof of innocence
to drive, call, or browse.

Privacy Pools attempts to find the middle between

https://cointelegraph.com/news/monero-transactions-japanese-authorities-arrest-18-scammers
https://cointelegraph.com/news/monero-transactions-japanese-authorities-arrest-18-scammers
https://cointelegraph.com/news/monero-transactions-japanese-authorities-arrest-18-scammers

surveillance and freedom. It offers privacy that is
conditional on compliance, requires proving you de-
serve it, and that can be withdrawn if you fail to
convince others of your innocence.

It’s permissioned finance with extra steps.

7.4 Aztec and Private L2s

Ethereum Layer 2s, when supplemented with privacy
features, represent serious engineering. Projects like
Aztec are building encrypted rollups with sophisti-
cated cryptography. The technology is sound and
the team is talented; this is not a critique of their
technical capabilities.

Fundamentally, Aztec and Zcash are solving different
problems.

Aztec is a smart contract platform. Its value propo-
sition is private programmability: encrypted DeFi,
confidential computation, and private applications.
This is valuable as it enables use cases not addressed
by Zcash. If you want to interact with complex fi-
nancial protocols without exposing your positions,
use an encrypted smart contract chain.

Zcash is money. Its value proposition is being a pri-
vate store of value and medium of exchange. The
memetics are clear: it’s essentially encrypted Bit-
coin. A place to hold wealth privately, for years or
decades, with confidence that the system will remain
in existence and continue to function.

These are not the same use case, therefore, their
requirements differ.

A store of value needs to be Lindy. It needs to sus-
tain years of operation under adversarial conditions,
survive market cycles, regulatory pressure, and tech-
nical challenges without breaking. Zcash has already
built nearly a decade of this history. Aztec is new,
and though the cryptography may be perfect, the
system has not been tested over time. This may be
acceptable for experimental applications, but not for
the security of wealth holdings.

A store of value also needs memetic strength. Bitcoin
succeeded partly because “digital gold” is a power-
ful narrative that people understand and believe.
“Encrypted Bitcoin” gives Zcash a similar anchor, in-
heriting Bitcoin’s monetary properties while adding
the privacy that Bitcoin lacks. Aztec does not have
this narrative, it’s simply a privacy infrastructure
layer, not a monetary network.

Beyond the technical design, there is a social layer.
Zcash’s community formed around a shared commit-

30

ment to privacy as a non-negotiable principle, and
over nearly a decade it has resisted legal, political,
and reputational pressure to weaken that commit-
ment. By contrast, a Layer-2 system inherits its
ultimate norms and governance constraints from its
Layer-1. In Ethereum’s case, it is unclear whether the
broader community would consistently defend strong
encryption and transaction privacy if faced with reg-
ulatory pressure. For an asset intended to function
as a long-term store of value, that uncertainty itself
constitutes risk.

Aztec and similar projects will likely find significant
demand for private applications, but for the core
use case of private money, a place where wealth can
rest indefinitely, they serve a different purpose than
Zcash.

Figure 8: Samizdat — Soviet citizens copying and
distributing banned literature by hand to evade state
censorship. Possession meant prison.

8. Misconceptions
8.1 “Zcash Is Not Private by Default”

This misconception confuses what has historically
been the default for wallets with protocol design.

The misconception about default privacy arose be-
cause early wallets defaulted to transparent addresses
for reasons of practicality. In Sprout and Sapling,
shielded transactions were computationally expensive
and exchanges required transparent deposits. So, the
path of least resistance was often transparent.

Orchard has now made shielded transactions more
efficient and wallets like Zashi enforce shielding by
default, automatically moving any transparent funds
into the shielded pool before allowing you to spend.
The user experience has become private-first.

The transparent option remains for specific use cases,
such as exchange compatibility, regulatory compli-
ance, and user choice, but the default path through
modern Zcash is shielded from start to finish.

8.2 “The Anonymity Set Is Small”

This misconception stems from confusing Zcash with
decoy-based systems.

As we covered above, in Monero, your transaction
hides among a fixed number of decoys. If there are 16
possible senders, your anonymity set is 16. Therefore,
many critics assume that Zcash works similarly: if few
people use the shielded pool, then your transaction
hides among just a few others.

However, this is wrong. Zcash does not sample de-
coys, it uses Merkle tree membership proofs.

When you spend a shielded note, you prove that
it exists somewhere in the commitment tree that
contains every note ever created, without revealing
which note it is. The verifier learns only that your
note is one of the millions, not hundreds or thousands,
in the tree.

The Orchard pool contains millions of notes, that’s
the anonymity set for every shielded transaction and
it grows with every transaction and never shrinks.

The size of the transparent pool is irrelevant, even if
99% of ZEC sat in transparent addresses, the shielded
1% would have an anonymity set of every shielded
note ever created. The two pools are mathematically
independent.

8.3 “Optional Transparency Weakens Privacy”

This misconception assumes the transparent pool
somehow contaminates the shielded pool.

The two are independent systems, transparent ZEC
and shielded ZEC operate in parallel. Transac-
tions on the transparent side reveal nothing about
the shielded side. The cryptographic guarantees of
shielded transactions do not depend on how much
ZEC sits in transparent addresses.

Think of it as two separate ledgers that happen to
share a currency; activity on one does not affect the
privacy properties of the other.

The transparent option exists because it provides real
value. Exchanges can use transparent addresses for
deposits and withdrawals, satisfying compliance re-
quirements while still listing ZEC. This permits users
who need auditability to choose it and applications
that require transparency to build on it.

31

The optional transparency does not compromise
shielded privacy, it simply increases Zcash’s adopt-
ability, something that completely private-by-default
chains lack. This is exemplified by the fact that Mon-
ero has been delisted from major exchanges, while
Zash remains on Coinbase and Gemini.

8.4 “Zcash Uses a Trusted Setup”

This misconception has failed to update from what
once was true, but isn’t anymore.

Sprout and Sapling required trusted setup ceremonies
where participants generated cryptographic parame-
ters and destroyed the secret values used to create
them. If anyone kept those secrets, they could forge
proofs and mint counterfeit ZEC.

As covered above, the ceremonies were elaborate, con-
sisting of multiple participants, air-gapped machines,
and even subsequently destroyed hardware. Despite
these strong precautions, the trust model introduced
modicums of doubt.

Orchard resolved this issue by using Halo 2, a proving
system that requires no trusted setup. There was no
ceremony, no toxic waste, and no threat of secrets
not being destroyed. Now, the parameters come from
public, verifiable data.

Zcash'’s shielded pool is now trustless, just like Bit-
coin, and the security is guaranteed by cryptographic
mathematics, rather than faith in ceremony partici-
pants.

8.5 “There Was a Premine”

This misconception is fundamentally incorrect. No
coins existed before the genesis block, there was zero
premine.

The fallacy arises from the Founders’ Reward, be-
cause during Zcash’s first four years, 20% of block
rewards went to founders, investors, employees, and
the Zcash Foundation. However, this was not a pre-
mine, it was simply a portion of ongoing issuance,
created through mining, just as for every other coin.

This distinction matters. Premine would have cre-
ated coins before anyone else can participate, whereas
the Founders’ Reward created coins at the same rate
as miner rewards, and then directed them differently.
Miners received 80% of each block, and founders re-
ceived the remaining 20%, importantly, both came
from the same issuance schedule.

The terms of the Founder’s Reward were fully dis-
closed before launch, both the whitepaper and the

website explained its reason and its process. So any-
one mining or buying ZEC in 2016 knew exactly how
its distribution functioned, and there was no hidden
allocation, secret stash, or coins that appeared from
nowhere.

The Founders’” Reward ended upon the first halving
in November 2020, at that point, every recipient had
received what was publicly promised and nothing
more.

8.6 “Devs Get 20% of Mining Rewards”

This misconception conflates two programs and their
respective recipients.

The Founders’ Reward ran from 2016 to 2020, di-
rected 20% of block rewards to founders, early in-
vestors, employees, and the Zcash Foundation, and
ended at the first halving. Therefore, founders
haven’t received protocol rewards since 2020.

The Dev Fund replaced the Founder’s Reward and
ran from 2020 to 2024. The Dev Fund also allo-
cates 20% of block rewards, but to different recipi-
ents. ECC receives 7% for protocol development, the
Zcash Foundation receives 5% for infrastructure and
grants, and community grants, administered by an
independent community, receive 8%.

Contrary to misconceptions, Dev Fund does not serve
to support personal enrichment. Rather, it funds
organizations that employ developers, maintain in-
frastructure, and award grants to ecosystem projects.
The fund pays for Zcash’s continuous improvement.

The alternative is Bitcoin’s model, which relies
on donations and corporate sponsorships—an ap-
proach with its own tradeoffs. Zcash instead adopted
protocol-level funding to support sustainable develop-
ment, and nearly nine years of continuous upgrades
suggest that this choice has been justified.

8.7 “The Zcash Foundation Controls Zcash”

This misconception fails to understand that no single
entity controls Zcash.

In fact, there are four independent organizations
that contribute to the protocol. The Electric Coin
Company (ECC) builds the reference implementation
and Zashi wallet. The Zcash Foundation maintains
Zebra, an independent node implementation, and
administers grants. Shielded Labs conducts research
from Switzerland. The Tachyon team, led by Sean
Bowe, builds scalability infrastructure.

32

These organizations operate in different jurisdictions,
with different funding sources, and different man-
dates. Though they collaborate on protocol develop-
ment, they can disagree on issues and do not answer
to a common authority.

The separation of these organizations was imple-
mented deliberately. In case one of the organizations
is pressured, captured, or compromised, the others
can continue to function and maintain the system.
The protocol does not depend on a single team, and
the two independent node implementations mean
that there’s no single authoritative codebase.

Zcash is more decentralized in governance than most
cryptocurrency projects. Arguably, it’s more decen-
tralized than Bitcoin, as the latter is dominated by
a single implementation mechanism and a handful of
maintainers control what gets merged.

8.8 “The Mossad Is Behind Zcash”

This misconception is simply conspiracy theory, there
is no evidence to support it.

The conspiracy either points to the fact that some
founders have connections to Israel or the fact that
academic cryptographers are involved in the project.
Based on this logic, any technology developed in part
by people with ties to any country is controlled by
that country’s intelligence services.

Zcash is open source, literally every line of code is
public and auditable; its cryptography is published
mathematics, peer-reviewed and scrutinized by re-
searchers worldwide. If there were a backdoor, it
would be visible in the code and the proofs.

Additionally, the four independent organizations,
based in multiple countries, contribute to the proto-
col. The community includes developers, researchers,
and users from every continent. It’s simply irra-
tional to believe that an intelligence agency controls
a globally distributed open source project due to the
descent of any of the early contributors.

The same conspiracy thinking could be used to target
any technology. Signal was developed in part from
grants from the United-States government, does that
mean that the CIA is behind Singal? Linux has
contributors from every major government and cor-
poration, does that mean that multiple governments
have compromised it?

The code is open source and the math is public, both
invalidate the conspiracy.

8.9 “Criminals Use Monero for a Reason”

This misconception implies that criminals would have
necessarily identified the strongest privacy technol-
ogy in order to conceal their crimes, but this gives
criminals too much credit.

Criminals are not cryptographers. They do not
evaluate elliptic curve implementations or compare
anonymity set constructions. Instead, they use
what’s familiar and what already has a reputation in
their communities.

)

Monero built its brand around being the ‘crime coin
and therefore attracted criminals. This demonstrates
a pattern of reinforcement between Monero’s brand
and criminals’ use of Monero, not Monero’s technical
superiority.

The comparison of Monero and Zcash’s privacy capac-
ities favours Zcash. Monero hides transactions among
16 decoys, while Zcash hides notes among more than
millions of others. Monero’s decoys can be elimi-
nated through chain analysis with time, while Zcash’s
cryptographic indistinguishability makes such chain
analysis decryption impossible. Monero cannot be
criminals’ choice for privacy reasons when law enforce-
ment has successfully traced Monero transactions, as
exemplified by the Japanese case covered above.

Criminals also use cash, prepaid phones, and even
standard email in their business, but no one argues
these are used because they’re the most secure op-
tions available. Rather, these means are used because
they are the most accessible and familiar options.

The criminals’ choices reveal decisions based on mar-
keting and network effects, not reasoned decisions
based on cryptographic strength.

8.10 “Monero Is More Private Because All
Transactions Are Private”

This misconception argues that Monero’s mandatory
privacy somehow means that it’s more secure than
Zcash’s optional privacy model. The confusion arises
from failing to distinguish design defaults from cryp-
tographic strength.

As covered above, Zcash is also private by default, as
modern wallets enforce shielding. The default path
is fully encrypted.

Even if Monero and Zcash’s default paths differed,
the distinction would not determine their privacy
strengths.

The mechanism matters more than the setting.

33

Monero’s mechanism: ring signatures with 16 decoys,
hiding your transaction among 16 possible senders.
As the decoys can be eliminated over time through
chain analysis, the anonymity set shrinks retroac-
tively and the connection can be traced.

Zcash’s mechanism: zero-knowledge proofs over a
Merkle tree of over millions notes. Your transaction
could have spent any of the notes, and there is no
process of elimination to trace the origin. The set
only grows and the cryptographic indistinguishability
is permanent.

The default of weak locks on every door is not prefer-
ential to the default of a strong lock on the doors that
matter, and the option to add locks to the others.
Mandatory weak privacy is simply weak privacy, and
optional strong privacy is simply strong privacy.

The correct question is not whether privacy is the
default, but whether the privacy holds up under
adversarial analysis. Zcash’s privacy does, Monero’s
privacy does not.

Figure 9: Zcash team in the early days, featuring
among others Zooko Wilcox-O’Hearn, co-founder of
Zcash, and Jay Graber, then a junior developer in
the Zcash team and who went on to later become
CEO of Bluesky.

9. Road Ahead
9.1 Project Tachyon

Tachyon addresses three scaling bottlenecks in Zcash:
double-spend prevention, blockchain scanning, and
transaction size. Double-spend prevention is the
hardest of the three, and its solution reveals what
makes Tachyon a genuine breakthrough rather than
another incremental optimization.

The Nullifier Problem Zcash prevents double-
spending through nullifiers - when you spend a note,
you reveal a nullifier: a random-looking string that
functions as a revocation token. Nullifiers can’t be
linked to the notes that they revoke, but if you try
to spend the same note twice, you reveal the same
nullifier and the network knows to reject the dupli-
cate.

The nullifier problem is that every validating node
must store every nullifier ever revealed, forever. It’s
unsafe to prune old nullifiers because someone may
decide to respend an old note. At one hundred trans-
actions per second, this would create roughly one
gigabyte of state growth per day. If you’re not fa-
miliar, that’s an extreme amount compared to most
blockchains, including high-throughput chains like
Solana.

Why Naive Solutions Fail The cryptographic
community has known for years that recursive proofs
could solve this problem. Rather than the network
tracking nullifiers, recursive proofs would permit
users to prove they haven’t double-spent. Attach
the proof to the transaction and validators verify the
proof and then prune old nullifiers.

The devil’s in the details.

e Approach 1: Download the full chain history
to your wallet and construct the proof locally.
This works cryptographically but fails practi-
cally, as your wallet bears the bandwidth and
computational cost of every transaction everyone
else makes and phones can’t do this.

e Approach 2: Add an intermediary service.
Send your transaction to the service, let it con-
struct the proof using full chain history, and
then broadcast it. This works, but it introduces
massive latency. The service must process the
entire chain for every transaction, and requires
you to trust the service with your transaction
data.

e Approach 3: Send your nullifiers to the service
in advance, receive the proofs back, then later,
attach those proofs to your transactions and
broadcast. This may seem clever, but it has a
fatal flaw: the service is able to observe which
nullifiers you're preparing to spend, and can
therefore link your transactions together, leaking
your primacy to the intermediary.

Oblivious Synchronization Here’s Tachyon’s so-
lution: A service that proves that you haven’t double-
spent by performing the computation, without seeing
what appears in the final transaction and learning
which nullifiers you're spending. The service cannot
distinguish your transactions from anyone else’s.

Technically, this is defined as being an “oblivious”
service. The service is blind to the actual data that
it’s processing on your behalf, so you get the compu-
tational help without trusting the helper.

34

The result is validators that don’t store the full nulli-
fier history. Therefore, users aren’t exposed to costs
that scale with total network activity, and ledger
indistinguishability, Zcash’s core privacy property,
remains intact.

The Other Bottlenecks Blockchain scanning, the
process of identifying which transactions belong to
you, is solved through protocol design changes rather
than new cryptography. The current requirement
to trial-decrypt every transaction becomes replaced
with a more efficient payment protocol.

Transaction size and verification time use the same
recursive proof techniques. The marginal transaction
size and the verification time drop to about the scale
of Bitcoin. Thus, a fully private Zcash transaction
ends up being around the same size and speed as a
transparent Bitcoin transaction.

What This Enables Once Tachyon is imple-
mented, Zcash’s scaling constraints will become the
same as those facing other blockchains - bandwidth
and latency. The cryptographic overhead that made
privacy expensive disappears and even a phone can
transact privately without processing the full chain.
A node can validate without storing gigabytes of
nullifier state.

The tradeoff between privacy and scale, long assumed
to be fundamental to encrypted money, turns out
to be an engineering problem with a cryptographic
solution.

9.2 Network Sustainability Mechanism (NSM)

Bitcoin faces a looming problem: As block rewards
halve towards zero, transaction fees must compensate
miners for retaining the network’s security. Whether
fees will suffice remains an open question, but the
anticipated alternatives, such as tail emissions, are
going to break the 21 million cap.

Zcash inherits this problem, but the Network Sus-
tainability Mechanism solves it without breaking the
cap.

The Mechanism The NSM allows ZEC to be
burned from circulating supply and reintroduced as
future block rewards. Burning 1 ZEC now causes 0.5
additional ZEC to be issued over the next four years,
0.25 over the following four years, and so on. The
issuance follows an exponential decay model approx-
imating the existing four-year halving schedule.

https://shieldedlabs.net/nsm/
https://shieldedlabs.net/nsm/

In the short-term, this results in reduced circulating
supply and increased scarcity. In the long-term, there
will be more ZEC available for block rewards further
along the emission curve, sustaining miner incentives
without exceeding the 21 million cap.

Three ZIPs ZIP 233 establishes voluntary burning,
meaning that users can donate directly to the Zcash
network rather than to organizations or individu-
als. Wallets could offer an option to burn ZEC when
transacting. Verifiable burns enable token-gated com-
munities or identity badges that prove contribution
to network sustainability.

ZIP 234 smooths the issuance curve, so that instead of
abrupt halvings, emissions decay continuously. This
provides a predictable mechanism for reintroducing
burned coins without sudden supply shocks.

ZIP 235 burns 60% of transaction fees. Currently,
this amounts to roughly 210 ZEC per year, which is
a negligible amount. The point is to establish the
mechanism while fees are low and miners have no
economic incentive to oppose it, future fee structures
remain a community decision to be made once NSM
is operational.

Future Applications The NSM creates infrastruc-
ture for use cases that the community will encounter
down the line:

e ZSA fees: Minting, transacting, or bridging
Zcash Shielded Assets could burn a portion to
compensate ZEC holders.

¢ Legacy support fees: Users storing funds in
older pools could pay fees, thus incentivizing
migration to newer, more secure pools.

o Privacy incentivization fees: Transparent
address usage could incur fees to compensate for
the reduced anonymity set.

¢ Dynamic fees: Shielded Labs is developing a
market-based fee system that replaces the fixed
10,000 zatoshi per-action fee. The mechanism
calculates a median-based marginal fee from the
previous 50 blocks, rounds to powers of ten to
preserve privacy, and offers a 10x priority lane
during congestion.

Why Now? Currently, Transaction fees are mini-
mal, so implementing the burn mechanism now avoids
the political difficulty that Ethereum faced with EIP-
1559, where miners had strong incentives to oppose
fee burning. If implemented now, the precedent will
exist by the time Zcash fees become significant.

35

The NSM can continue Zcash’s tradition of improv-
ing on Bitcoin’s design. Privacy and the Dev Fund
already differentiate Zcash, and this upgrade would
add a third differentiation: a mechanism for long-
term network sustainability that’s not present in
Bitcoin.

9.3 Quantum Resistance

Zcash’s relationship with quantum computing is more
nuanced than most other cryptocurrencies. The pro-
tocol already provides significant post-quantum pri-
vacy protections in common scenarios, as a result
of deliberate design choices made since the project’s
inception.

What’s Already Protected Quantum adver-
saries cannot compromise onchain anonymity.
Zcash’s nullifiers, the mechanism preventing double-
spends, use keyed pseudorandom functions built on
symmetric cryptography, and these primitives remain
secure against quantum attacks. The commitment
schemes are therefore perfectly hidden, and the sym-
metric encryption uses key sizes designed for post-
quantum security.

This contrasts sharply with other privacy cryptocur-
rencies. Monero’s key images, the equivalent of nulli-
fiers, would become transparent to a quantum adver-
sary, and the transaction graph would be revealed.
Zcash’s construction avoids this vulnerability entirely.

The Two Threats Quantum computers threaten
two distinct properties: privacy and soundness.

Privacy concerns center on “harvest now, decrypt
later” style attacks. An adversary could collect en-
crypted transaction data today and decrypt it later,
once quantum computers have arrived. This pri-
marily affects in-band secret distribution, the mecha-
nism for transmitting transaction details to recipients.
Tachyon’s design removes in-band secret distribution
entirely, protecting against this future threat.

Soundness concerns center on elliptic curve cryptogra-
phy, which could be broken by quantum computers.
Though this would enable counterfeiting or theft,
it would not compromise privacy. Therefore, the
threats differ in their urgency as privacy breaks are
retroactive (past transactions become vulnerable),
while soundness breaks often are not (you can react
when quantum computers appear).

Quantum Recoverability ECC has developed
techniques for “quantum recoverability” in Orchard.

https://zips.z.cash/zip-0233
https://zips.z.cash/zip-0234
https://zips.z.cash/zip-0235
https://fees.shieldedinfra.net/

After upcoming wallet changes, and assuming that
quantum computers appear, users would be able
to recover funds through a special mechanism that
prevents quantum adversaries from stealing them, a
mechanism that also protects privacy.

The timeline for wallet integration is that it’s released
in 2026, so users that shield their coins and await
these improvements will be protected.

Best Practices Today Shield your coins. The
shielded pool’s design already provides substantial
quantum resistance for on-chain privacy. Treat ad-
dresses as secrets whenever possible. Turnstiles re-
main the final defense: even if counterfeiting occurred,
it would eventually become detectable when funds
exit shielded pools.

Zcash’s cryptographers will remain ahead of devel-
opments, because the protocol’s modular design,
which isolates vulnerable primitives, enables future
upgrades without overhaul.

Figure 10: “Tank Man” standing in front of a column
of tanks near Tiananmen Square in Beijing on June
5, 1989.

10. Conclusion

In conclusion, this article opened with a simple ob-
servation: unless you’re using cash, every purchase
you make is tracked and stored indefinitely. Bitcoin
could have fixed this, but it didn’t. The blockchain
that was supposed to free us from financial surveil-
lance became the most comprehensive surveillance
tool ever deployed.

Zcash took a different path. Instead of transparency
by default, with privacy bolted on as an afterthought,
it first solved the hardest problem: how do you verify
transactions without seeing them?

36

The answer required zero-knowledge proofs, com-
mitments that hide amounts, nullifiers that prevent
double-spends without linking transactions, and a
note model that shatters the transaction graph en-
tirely. Nine years of protocol evolution followed:
Sprout proved that privacy was possible, Sapling
made privacy practical, and now Orchard has made
it trustless.

The result of this evolution is ledger indistinguishabil-
ity. Two shielded transactions cannot be told apart,
not by observers, validators, or nation-states with
unlimited resources. The data is not just obscured
or mixed with decoys, it is encrypted. What the net-
work sees is mathematically indistinguishable from
random noise. A true Swiss vault.

The road ahead remains demanding. Tachyon re-
moves the bottlenecks that constrain scale. The NSM
creates sustainable economics. Quantum resistance
is a solvable problem with work already underway.
The foundation is built. The cryptography works.
The privacy is real.

Before us are two futures: One where every transac-
tion is visible, controllable, and reversible by whoever
holds power, and another where money is as private
as thoughts.

Zcash is how money stays free.

Further Reading

e The Sovereign Individual by James Dale David-
son

My Zcash Investment Thesis by Frank

Braun

Zcash Protocol Specification by Daira-

Emma Hopwood et al.

Zcash: A Zero to Hero’s Guide by Arjun

Khemani

Understanding Zcash: A Comprehensive

Overview by Youssef Haidar

Inside Zcash: Encrypted Money at Plane-

tary Scale by CoinDesk Research

The Case for a Small Allocation to ZEC by

Sacha

Freedom Money by Arjun Khemani

Bitcoin Whitepaper by Satoshi Nakamoto

https://example.com
https://www.scifi.money/zec-bag
https://zips.z.cash/protocol/protocol.pdf
https://www.scifi.money/zcash
https://messari.io/report/understanding-zcash-a-comprehensive-overview
https://messari.io/report/understanding-zcash-a-comprehensive-overview
https://www.coindesk.com/research/inside-zcash-encrypted-money-at-planetary-scale
https://www.coindesk.com/research/inside-zcash-encrypted-money-at-planetary-scale
https://www.scifi.money/zec-thesis
https://www.scifi.money/freedom-money
https://bitcoin.org/bitcoin.pdf

	1. Introduction
	2. Origins
	2.1 David Chaum and the Birth of Digital Cash
	2.2 The Cypherpunks
	2.3 Bitcoin: The Wrong Tradeoff
	2.4 Zerocoin: The Bolt-On Attempt
	2.5 Zerocash: The Rebuild
	2.6 The Genesis Block

	3. What is Zcash?
	3.1 A Bitcoin Primer
	3.2 Bitcoin, But Private
	3.3 The Fundamental Problem
	3.4 Shielded Notes
	3.5 Commitments and Nullifiers
	3.6 Keys and Addresses

	4. Transaction Lifecycle
	4.1 The Setup
	4.2 Note Selection and Retrieval
	4.3 Fetching Merkle Paths
	4.4 Computing Nullifiers
	4.5 Creating Output Notes
	4.6 The Proof
	4.7 Assembling the Transaction
	4.8 Broadcasting and Mempool
	4.9 Block Inclusion and Finality
	4.10 Recipient Detection

	5. The Philosophy of Privacy
	5.1 Privacy as a Precondition for Progress
	5.2 The Transparency Trap
	5.3 Privacy Must Be Absolute
	5.4 The Macro Case
	5.5 The Fork in History

	6. Evolution & Economics
	6.1 Protocol Generations
	6.2 Turnstiles
	6.3 Funding Development
	6.4 Decentralized Governance

	7. Zcash VS …
	7.1 Tornado Cash and Mixers
	7.2 Monero
	7.3 Privacy Pools
	7.4 Aztec and Private L2s

	8. Misconceptions
	8.1 “Zcash Is Not Private by Default”
	8.2 “The Anonymity Set Is Small”
	8.3 “Optional Transparency Weakens Privacy”
	8.4 “Zcash Uses a Trusted Setup”
	8.5 “There Was a Premine”
	8.6 “Devs Get 20% of Mining Rewards”
	8.7 “The Zcash Foundation Controls Zcash”
	8.8 “The Mossad Is Behind Zcash”
	8.9 “Criminals Use Monero for a Reason”
	8.10 “Monero Is More Private Because All Transactions Are Private”

	9. Road Ahead
	9.1 Project Tachyon
	9.2 Network Sustainability Mechanism (NSM)
	9.3 Quantum Resistance

	10. Conclusion

